login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of n into parts not less than the integer part of the square root of n.
2

%I #12 Jan 29 2014 04:03:03

%S 1,1,2,3,2,2,4,4,7,4,5,6,9,10,13,17,11,12,16,18,24,27,34,39,50,30,36,

%T 42,50,58,70,80,95,110,129,150,96,107,126,143,167,188,221,248,288,326,

%U 376,424,491,304,346,390,443,498,565,635,719,807,911,1022,1153

%N Number of partitions of n into parts not less than the integer part of the square root of n.

%H Reinhard Zumkeller, <a href="/A194020/b194020.txt">Table of n, a(n) for n = 0..250</a>

%e a(7) = #{7, 5+2, 4+3, 3+2+2} = 4;

%e a(8) = #{8, 6+2, 5+3, 4+4, 4+2+2, 3+3+2, 2+2+2+2} = 7;

%e a(9) = #{9, 6+3, 5+4, 3+3+3} = 4;

%e a(10) = #{10, 7+3, 6+4, 5+5, 4+3+3} = 5;

%e a(11) = #{11, 8+3, 7+4, 6+5, 5+3+3, 4+4+3} = 6.

%t Table[Length[Select[IntegerPartitions[n], #[[-1]] >= Floor[Sqrt[n]] &]], {n, 60}] (* _Alonso del Arte_, Aug 12 2011 *)

%o (Haskell)

%o a194020 n = p (a000196 n) n where

%o p _ 0 = 1

%o p k m | m < k = 0

%o | otherwise = p k (m - k) + p (k+1) m

%Y Cf. A097356, A000041, A000196.

%K nonn,look

%O 0,3

%A _Reinhard Zumkeller_, Aug 12 2011