Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Oct 11 2019 06:32:02
%S 1,3,2,6,5,3,11,10,8,5,19,18,16,13,8,32,31,29,26,21,13,53,52,50,47,42,
%T 34,21,87,86,84,81,76,68,55,34,142,141,139,136,131,123,110,89,55,231,
%U 230,228,225,220,212,199,178,144,89,375,374,372,369,364,356,343
%N Mirror of the triangle A094585.
%C A193999 is obtained by reversing the rows of the triangle A094585.
%H Muniru A Asiru, <a href="/A193999/b193999.txt">Table of n, a(n) for n = 1..11325</a>
%F Write w(n,k) for the triangle at A094585. The triangle at A094585 is then given by w(n,n-k).
%F T(n,k) = Fibonacci(n+3) - Fibonacci(k+2) for n > 0 and 1 <= k <= n. - _Rigoberto Florez_, Oct 03 2019
%e First six rows:
%e 1;
%e 3, 2;
%e 6, 5, 3;
%e 11, 10, 8, 5;
%e 19, 18, 16, 13, 8;
%e 32, 31, 29, 26, 21, 13;
%t z = 11;
%t p[n_, x_] := Sum[Fibonacci[k + 1]*x^(n - k), {k, 0, n}];
%t q[n_, x_] := x*q[n - 1, x] + 1; q[0, n_] := 1;
%t p1[n_, k_] := Coefficient[p[n, x], x^k];
%t p1[n_, 0] := p[n, x] /. x -> 0;
%t d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}]
%t h[n_] := CoefficientList[d[n, x], {x}]
%t TableForm[Table[Reverse[h[n]], {n, 0, z}]]
%t Flatten[Table[Reverse[h[n]], {n, -1, z}]] (* A094585 *)
%t TableForm[Table[h[n], {n, 0, z}]]
%t Flatten[Table[h[n], {n, -1, z}]] (* A193999 *)
%t (* alternate program *)
%t Table[Fibonacci[n+3]-Fibonacci[k+2], {n,1,10}, {k,1,n}] //TableForm (* _Rigoberto Florez_, Oct 03 2019 *)
%o (GAP) Flat(List([1..11],n->Reversed(List([1..n],k->Fibonacci(n+3)-Fibonacci(n-k+3))))); # _Muniru A Asiru_, Apr 28 2019
%Y Cf. A094585.
%K nonn
%O 1,2
%A _Clark Kimberling_, Aug 11 2011
%E Offset 1 from _Muniru A Asiru_, Apr 29 2019