login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Mirror of the triangle A193967.
2

%I #5 Mar 30 2012 18:57:39

%S 1,1,1,7,4,3,19,12,7,4,54,33,21,11,7,142,88,54,33,18,11,376,232,144,

%T 87,54,29,18,985,609,376,232,141,87,47,29,2583,1596,987,608,376,228,

%U 141,76,47,6763,4180,2583,1596,984,608,369,228,123,76,17710,10945

%N Mirror of the triangle A193967.

%C A193967 is obtained by reversing the rows of the triangle A193968.

%F Write w(n,k) for the triangle at A193967. The triangle at A193968 is then given by w(n,n-k).

%e First six rows:

%e 1

%e 1....1

%e 7....4....3

%e 19...12...7...4

%e 54...33...21..11..7

%e 142..88...54..33..18..11

%t z = 12;

%t p[n_, x_] := Sum[LucasL[k + 1]*x^(n - k), {k, 0, n}];

%t q[n_, x_] := Sum[Fibonacci[k + 1]*x^(n - k), {k, 0, n}];

%t t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;

%t w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1

%t g[n_] := CoefficientList[w[n, x], {x}]

%t TableForm[Table[Reverse[g[n]], {n, -1, z}]]

%t Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193967 *)

%t TableForm[Table[g[n], {n, -1, z}]]

%t Flatten[Table[g[n], {n, -1, z}]] (* A193968 *)

%Y Cf. A193968.

%K nonn,tabl

%O 0,4

%A _Clark Kimberling_, Aug 10 2011