login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = a(n-1)^2 - n^(n-2) + n.
1

%I #7 Mar 31 2012 10:24:05

%S 0,0,1,1,-11,1,-1289,1644721,2705106905705,7317603371292879756764065,

%T 53547319099556919431874542743248407878119975324235

%N a(n) = a(n-1)^2 - n^(n-2) + n.

%C Example of a recursive sequence which produces a table containing three ones.

%H Arkadiusz Wesolowski, <a href="/A193925/b193925.txt">Table of n, a(n) for n = 0..14</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RecursiveSequence.html">Recursive Sequence</a>

%F a(0) = 0, a(n) = a(n-1)^2 - n^(n-2) + n.

%e a(4) = -11 because a(3) = 1 and 1^2 - 4^(4-2) + 4 = -11.

%t RecurrenceTable[{a[n] == a[n - 1]^2 - n^(n - 2) + n, a[0] == 0}, a, {n, 10}]

%o (PARI) print1(a=0, ", "); for(n=1, 10, print1(a=a^2-n^(n-2)+n, ", "));

%Y Cf. A003095, A000272.

%K easy,sign

%O 0,5

%A _Arkadiusz Wesolowski_, Aug 09 2011