login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Mirror of the triangle A115068.
7

%I #12 Apr 10 2020 12:38:07

%S 1,2,2,3,6,4,4,12,16,8,5,20,40,40,16,6,30,80,120,96,32,7,42,140,280,

%T 336,224,64,8,56,224,560,896,896,512,128,9,72,336,1008,2016,2688,2304,

%U 1152,256,10,90,480,1680,4032,6720,7680,5760,2560,512,11,110,660

%N Mirror of the triangle A115068.

%C A193862 is obtained by reversing the rows of the triangle A115068.

%C Riordan array (1/(1-x)^2, 2*x/(1-x)). - _Philippe Deléham_, Jan 29 2014

%C Let P(n, x) := Sum_{k=1..n} T(n, k)*x^k. Then P(n, P(m, x)) = P(n*m, x) for all n and m in Z. - _Michael Somos_, Apr 10 2020

%F Write w(n,k) for the triangle at A115068. The triangle at A193862 is then given by w(n,n-k).

%F T(n, k) = binomial(n, k)/2 * 2^k. - _Michael Somos_, Apr 10 2020

%e First six rows:

%e 1

%e 2...2

%e 3...6....4

%e 4...12...16...8

%e 5...20...40...40....16

%e 6...30...80...120...96...32

%e Production matrix begins

%e 2......2

%e -1/2...1...2

%e 1/4....0...1...2

%e -1/8...0...0...1...2

%e 1/16...0...0...0...1...2

%e -1/32..0...0...0...0...1...2

%e 1/64...0...0...0...0...0...1...2

%e -1/128.0...0...0...0...0...0...1...2

%e 1/256..0...0...0...0...0...0...0...1...2

%e - _Philippe Deléham_, Jan 29 2014

%t z = 11;

%t p[0, x_] := 1; p[n_, x_] := x*p[n - 1, x] + 1;

%t q[n_, x_] := (2 x + 1)^n;

%t p1[n_, k_] := Coefficient[p[n, x], x^k];

%t p1[n_, 0] := p[n, x] /. x -> 0;

%t d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}]

%t h[n_] := CoefficientList[d[n, x], {x}]

%t TableForm[Table[Reverse[h[n]], {n, 0, z}]]

%t Flatten[Table[Reverse[h[n]], {n, -1, z}]] (* A115068 *)

%t TableForm[Table[h[n], {n, 0, z}]]

%t Flatten[Table[h[n], {n, -1, z}]] (* A193862 *)

%t T[ n_, k_] := Binomial[n, k]/2 2^k; (* _Michael Somos_, Apr 10 2020 *)

%o (PARI) {T(n, k) = binomial(n, k)/2 * 2^k}; /* _Michael Somos_, Apr 10 2020 */

%Y Cf. A115068.

%K nonn,tabl

%O 0,2

%A _Clark Kimberling_, Aug 07 2011