%I #38 Mar 30 2012 18:40:59
%S 0,0,1,0,1,1,0,1,1,2,0,1,1,2,1,0,1,1,3,1,2,0,1,2,2,1,2,1,0,1,2,2,2,3,
%T 1,3,0,1,2,2,2,3,2,2,2,0,1,2,6,2,4,3,3,2,2,0,1,3,5,2,4,3,3,3,3,1,3,0,
%U 1,4,7,3,4,3,4,3,2,2,2,1,0,1,5
%N Array, by antidiagonals, A(k,n) is the number of prime factors of n^(2^k) + 1, counted with multiplicity.
%C The main diagonal A(n,n) = number of prime factors of n^(2^n) + 1, counted with multiplicity, begins 0, 1, 1, 3, 2, 4, 3, 6, 6.
%e A(4,5) = 3 because 1+5^16 = 152587890626 = 2 * 2593 * 29423041, which has 3 prime factors. The array begins:
%e ================================================================
%e ....|n=0|n=1|n=2|n=3|n=4|n=5|n=6|n=7|n=8|n=9|.10|.11|comment
%e ====|===|===|===|===|===|===|===|===|===|===|===|===|===========
%e k=0.|.0.|.1.|.1.|.2.|.1.|.2.|.1.|.3.|.2.|.2.|.1.|.3.|A001222
%e k=1.|.0.|.1.|.1.|.2.|.1.|.2.|.1.|.3.|.2.|.2.|.1.|.2.|A193330
%e k=2.|.0.|.1.|.1.|.2.|.1.|.2.|.1.|.2.|.2.|.3.|.2.|.2.|A193929
%e k=3.|.0.|.1.|.1.|.3.|.1.|.3.|.2.|.3.|.3.|.2.|.2.|.3.|A194003
%e k=4.|.0.|.1.|.1.|.2.|.2.|.3.|.3.|.3.|.3.|.2.|.5.|.3.|not in OEIS
%e k=5.|.0.|.1.|.2.|.2.|.2.|.4.|.3.|.4.|.3.|.2.|.4.|.4.|not in OEIS
%e ================================================================
%Y Cf. A001222, A002523, A060890, A193330, A193929, A194003.
%K nonn,hard,tabl
%O 0,10
%A _Jonathan Vos Post_, Aug 11 2011
%E Edited by _Alois P. Heinz_, Aug 11 2011
%E More terms from _Max Alekseyev_, Sep 09 2011