login
Triangle T(n,k), n>=0, 1<=k<=C(n), read by rows: T(n,k) = number of elements <= k-th path in the poset of Dyck paths of semilength n ordered by inclusion.
5

%I #23 May 15 2019 16:22:22

%S 1,1,1,2,1,2,2,4,5,1,2,2,4,5,2,4,4,8,10,5,10,13,14,1,2,2,4,5,2,4,4,8,

%T 10,5,10,13,14,2,4,4,8,10,4,8,8,16,20,10,20,26,28,5,10,10,20,25,13,26,

%U 34,37,14,28,37,41,42,1,2,2,4,5,2,4,4,8,10,5,10,13,14,2,4,4,8,10,4

%N Triangle T(n,k), n>=0, 1<=k<=C(n), read by rows: T(n,k) = number of elements <= k-th path in the poset of Dyck paths of semilength n ordered by inclusion.

%H Alois P. Heinz, <a href="/A193691/b193691.txt">Rows n = 0..9, flattened</a>

%e Dyck paths of semilength n=3 listed in lexicographic order:

%e . /\

%e . /\ /\ /\/\ / \

%e . /\/\/\ /\/ \ / \/\ / \ / \

%e . 101010 101100 110010 110100 111000

%e . k = (1) (2) (3) (4) (5)

%e .

%e We have (1) <= (1); (1),(2) <= (2); (1),(3) <= (3); (1),(2),(3),(4) <= (4); and (1),(2),(3),(4),(5) <= (5), thus row 3 = [1, 2, 2, 4, 5].

%e Triangle begins:

%e 1;

%e 1;

%e 1, 2;

%e 1, 2, 2, 4, 5;

%e 1, 2, 2, 4, 5, 2, 4, 4, 8, 10, 5, 10, 13, 14;

%e 1, 2, 2, 4, 5, 2, 4, 4, 8, 10, 5, 10, 13, 14, 2, 4, 4, 8, ...

%p d:= proc(n, l) local m; m:= nops(l);

%p `if`(n=m, [l], [seq(d(n, [l[], j])[],

%p j=`if`(m=0, 1, max(m+1, l[-1]))..n)])

%p end:

%p le:= proc(x, y) local i;

%p for i to nops(x) do if x[i]>y[i] then return false fi od; true

%p end:

%p T:= proc(n) option remember; local l;

%p l:= d(n, []);

%p seq(add(`if`(le(l[i], l[j]), 1, 0), i=1..j), j=1..nops(l))

%p end:

%p seq(T(n), n=0..6);

%t d[n_, l_] := d[n, l] = Module[{m}, m = Length[l]; If[n == m, {l}, Flatten[#, 1]& @ Table[d[n, Append[l, j]], {j, If[m == 0, 1, Max[m+1, Last[l]]], n}]]]; le[x_, y_] := Module[{i}, For[i = 1, i <= Length[x], i++, If[x[[i]] > y[[i]], Return[False]]]; True]; T[n_] := T[n] = Module[{l}, l = d[n, {}]; Table[Sum[If[le[l[[i]], l[[j]]], 1, 0], {i, 1, j}], {j, 1, Length[l]}]]; Table[T[n], {n, 0, 6}] // Flatten (* _Jean-François Alcover_, Feb 01 2017, after _Alois P. Heinz_ *)

%Y Row sums give A005700.

%Y Lengths and last elements of rows give A000108.

%Y Cf. A193692, A193693, A193694.

%K nonn,look,tabf

%O 0,4

%A _Alois P. Heinz_, Aug 02 2011