%I #10 Mar 30 2012 18:57:38
%S 1,2,5,22,201,3690,131149,9004286,1204317329,316525415890,
%T 164556516205461,169974659148800742,349799994417738642265,
%U 1436618749673583674658362,11785996128174350460348176861,193254862258295280115072223316430
%N Q-residue of the triangle A038207 of coefficients of (x+2)^n, where Q is the triangle given by t(i,j)=1 for 0<=i<=j. (See Comments.)
%C For the definition of Q-residue, see A193649.
%t q[n_, k_] := Coefficient[(x + 2)^n, x, k]; (* A038207 *)
%t r[0] = 1; r[k_] := Sum[q[k - 1, i] r[k - 1 - i], {i, 0, k - 1}]
%t p[n_, k_] := 1
%t v[n_] := Sum[p[n, k] r[n - k], {k, 0, n}]
%t Table[v[n], {n, 0, 16}] (* A038207 *)
%t TableForm[Table[q[i, k], {i, 0, 4}, {k, 0, i}]]
%t Table[r[k], {k, 0, 8}] (* A126443 *)
%t TableForm[Table[p[n, k], {n, 0, 4}, {k, 0, n}]]
%Y Cf. A038207, A126443, A193649.
%K nonn
%O 0,2
%A _Clark Kimberling_, Aug 02 2011