login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of arrays of -6..6 integers x(1..n) with every x(i) in a subsequence of length 1 or 2 with sum zero
1

%I #7 Feb 19 2015 14:08:28

%S 1,13,37,205,793,3673,15481,68485,295453,1291237,5605489,24418801,

%T 106183729,462160957,2010578005,8748949309,38065839625,165631750345,

%U 720670846249,3135725035573,13643790283981,59365501769941

%N Number of arrays of -6..6 integers x(1..n) with every x(i) in a subsequence of length 1 or 2 with sum zero

%C Column 6 of A193648

%H R. H. Hardin, <a href="/A193646/b193646.txt">Table of n, a(n) for n = 1..200</a>

%F Empirical: a(n) = 2*a(n-1) +10*a(n-2) +a(n-3).

%F Empirical: G.f.: -x*(1+11*x+x^2) / ( -1+2*x+10*x^2+x^3 ). - _R. J. Mathar_, Feb 19 2015

%e Some solutions for n=6

%e ..2...-4...-1...-5....1....5....6....0....1....0....6....0....0...-1....0...-2

%e .-2....4....1....5...-1...-5...-6....0...-1....3...-6....6....3....1....1....2

%e .-2...-4...-3....2....0....5....0....0....0...-3....2...-6...-3...-3...-1....2

%e ..2....1....3...-2....0....0...-3....2...-3....3...-2....2...-2....3....3...-2

%e .-5...-1...-5....1....6....4....3...-2....3....6....0...-2....2....5...-3...-3

%e ..5....0....5...-1...-6...-4....0....0...-3...-6....0....2...-2...-5....3....3

%K nonn

%O 1,2

%A _R. H. Hardin_ Aug 02 2011