Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Jan 31 2015 12:29:30
%S 1,1,1,1,1,1,1,2,2,1,1,2,3,2,1,1,3,5,5,3,1,1,3,8,10,8,3,1,1,4,11,18,
%T 18,11,4,1,1,4,14,28,35,28,14,4,1,1,5,18,42,63,63,42,18,5,1,1,5,23,60,
%U 105,126,105,60,23,5,1
%N Triangle given by p(n,k) = ceiling(C(n,k)/2).
%C p(n,k) = (A007318(n,k) + A047999(n,k))/2. - _Jeremy Gardiner_, Jul 28 2013.
%H Reinhard Zumkeller, <a href="/A193596/b193596.txt">Rows n = 0..124 of triangle, flattened</a>
%F p(n,k)=ceiling((1/2)C(n,k)).
%e First 5 rows of A193596:
%e 1
%e 1....1
%e 1....1....1
%e 1....2....2....1
%e 1....2....3....2....1
%t (See A193597, the augmentation of A193596.)
%o (Haskell)
%o a193596 n k = a193596_tabl !! n !! k
%o a193596_row n = a193596_tabl !! n
%o a193596_tabl = map (map ((flip div 2) . (+ 1))) a007318_tabl
%o -- _Reinhard Zumkeller_, Jan 31 2015
%Y Cf. A193597.
%Y Cf. A007318.
%K nonn,tabl
%O 0,8
%A _Clark Kimberling_, Jul 31 2011