login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Augmentation of the Fibonacci triangle A193588. See Comments.
4

%I #6 Mar 30 2012 18:57:38

%S 1,1,2,1,4,7,1,6,18,31,1,8,33,90,154,1,10,52,185,481,820,1,12,75,324,

%T 1065,2690,4575,1,14,102,515,2006,6276,15547,26398,1,16,133,766,3420,

%U 12468,37711,92124,156233,1,18,168,1085,5439,22412,78030,230277

%N Augmentation of the Fibonacci triangle A193588. See Comments.

%C For an introduction to the unary operation augmentation as applied to triangular arrays or sequences of polynomials, see A193091.

%C Regarding A193589, if the triangle is written as (w(n,k)), then w(n,n)=A007863(n); w(n,n-1)=A011270; and

%C (col 3)=A033537.

%e First 5 rows of A193588:

%e 1

%e 1....2

%e 1....2....3

%e 1....2....3....5

%e 1....2....3....5....8

%e First 5 rows of A193589:

%e 1

%e 1....2

%e 1....4....7

%e 1....6....18...31

%e 1....8....33...90...154

%t p[n_, k_] := Fibonacci[k + 2]

%t Table[p[n, k], {n, 0, 5}, {k, 0, n}] (* A193588 *)

%t m[n_] := Table[If[i <= j, p[n + 1 - i, j - i], 0], {i, n}, {j, n + 1}]

%t TableForm[m[4]]

%t w[0, 0] = 1; w[1, 0] = p[1, 0]; w[1, 1] = p[1, 1];

%t v[0] = w[0, 0]; v[1] = {w[1, 0], w[1, 1]};

%t v[n_] := v[n - 1].m[n]

%t TableForm[Table[v[n], {n, 0, 6}]] (* A193589 *)

%t Flatten[Table[v[n], {n, 0, 8}]]

%Y Cf. A193091, A193588.

%K nonn,tabl

%O 0,3

%A _Clark Kimberling_, Jul 31 2011