login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: first column: top entry is 1, then powers of 2; rest of triangle is Pascal's triangle A007318.
3

%I #10 Sep 08 2022 08:45:58

%S 1,1,1,2,1,1,4,1,2,1,8,1,3,3,1,16,1,4,6,4,1,32,1,5,10,10,5,1,64,1,6,

%T 15,20,15,6,1,128,1,7,21,35,35,21,7,1,256,1,8,28,56,70,56,28,8,1,512,

%U 1,9,36,84,126,126,84,36,9,1,1024,1,10,45,120,210,252,210,120,45,10,1,2048,1,11,55,165,330,462,462,330,165,55,11,1

%N Triangle read by rows: first column: top entry is 1, then powers of 2; rest of triangle is Pascal's triangle A007318.

%C The original definition of A135233 made no sense. In fact A135233 is the binomial transform of the present sequence.

%H G. C. Greubel, <a href="/A193554/b193554.txt">Rows n = 0..100 of triangle, flattened</a>

%e Triangle begins:

%e 1;

%e 1, 1;

%e 2, 1, 1;

%e 4, 1, 2, 1;

%e 8, 1, 3, 3, 1;

%e 16, 1, 4, 6, 4, 1;

%e 32, 1, 5, 10, 10, 5, 1;

%e 64, 1, 6, 15, 20, 15, 6, 1;

%e ...

%p T:= proc(n, k) option remember;

%p if k=n then 1

%p elif k=0 then 2^(n-1)

%p else binomial(n-1,k-1)

%p fi; end:

%p seq(seq(T(n, k), k=0..n), n=0..12); # _G. C. Greubel_, Nov 20 2019

%t T[n_, k_]:= T[n, k]= If[k==n, 1, If[k==0, 2^(n-1), Binomial[n-1, k-1]]];

%t Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* _G. C. Greubel_, Nov 20 2019 *)

%o (PARI) T(n,k) = if(k==n, 1, if(k==0, 2^(n-1), binomial(n-1, k-1) )); \\ _G. C. Greubel_, Nov 20 2019

%o (Magma)

%o function T(n,k)

%o if k eq n then return 1;

%o elif k eq 0 then return 2^(n-1);

%o else return Binomial(n-1, k-1);

%o end if; return T; end function;

%o [T(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Nov 20 2019

%o (Sage)

%o @CachedFunction

%o def T(n, k):

%o if (k==n): return 1

%o elif (k==0): return 2^(n-1)

%o else: return binomial(n-1, k-1)

%o [[T(n, k) for k in (0..n)] for n in (0..12)] # _G. C. Greubel_, Nov 20 2019

%Y Cf. A000079 (row sums)

%Y Cf. A007318, A135233.

%K nonn,tabl

%O 0,4

%A _N. J. A. Sloane_, Jul 30 2011