login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of bean curve perimeter.
1

%I #35 Jul 25 2020 10:21:54

%S 3,7,5,0,2,1,3,6,4,5,1,5,7,2,4,2,5,7,1,9,2,8,2,9,5,7,9,6,6,0,5,5,1,4,

%T 0,3,1,6,1,8,2,4,5,4,8,9,8,5,1,0,4,9,1,3,0,6,0,5,0,7,8,5,9,7,8,3,9,2,

%U 0,3,0,5,9,5,5,9,8,1,4,3,1,3,0,5,7,4,2,4,8,0,2,3,2,7,9,6,2,2,6,5,1,5,9,8,6,1,8,5,7,4

%N Decimal expansion of bean curve perimeter.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BeanCurve.html">Bean Curve</a>

%e 3.750213645...

%t f[x_, y_] = x^4 + x^2*y^2 + y^4 - x*(x^2 + y^2); x1 = 1/3; x2 = 5/6; sx = Solve[f[x, y] == 0, x]; sy = Solve[f[x, y] == 0, y]; g1[y_] = x /. sx[[3]]; g2[y_] = x /. sx[[4]]; f[x_] = y /. sy[[4]]; p1 = NIntegrate[ Sqrt[1 + g1'[y]^2], {y, 0, f[x1]}, WorkingPrecision -> 120]; p2 = NIntegrate[ Sqrt[1 + f'[x]^2], {x, x1, x2}, WorkingPrecision -> 120]; p3 = NIntegrate[ Sqrt[1 + g2'[y]^2], {y, 0, f[x2]}, WorkingPrecision -> 120]; Take[ RealDigits[2*(p1+p2+p3)][[1]], 105]

%t Take[RealDigits[9/2 + NIntegrate[2 Sqrt[1 + (1 - 2 x + (1 + 3 x - 6 x^2)/Sqrt[1 + (2 - 3 x) x])^2/(8 x (1 - x + Sqrt[1 + (2 - 3 x) x]))] - 1/Sqrt[x] - 1/(2 (1 - x)^(3/4)) - 3/(8 (1 - x)^(1/4)), {x, 0, 1}, WorkingPrecision -> 220, PrecisionGoal -> 110, MaxRecursion -> 50]][[1]], 110] (* _Eric W. Weisstein_, Jul 23 2020 *)

%Y Cf. A193505 (area).

%Y Cf. A336501 (decimal expansion of the lima bean curve).

%K nonn,cons

%O 1,1

%A _Jean-François Alcover_, Jul 29 2011