Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Aug 03 2020 17:14:05
%S 1,3,6,18,18,42,38,93,84,126,102,186,180,324,198,342,258,540,434,546,
%T 402,756,588,972,578,942,678,1332,948,1266,972,1596,1302,1980,1260,
%U 1842,1298,2484,1842,2286,1602,2613,2124,3534,2100,3042,2220,4536,2772,3606
%N Sum of the divisors of n^2+1.
%H Amiram Eldar, <a href="/A193433/b193433.txt">Table of n, a(n) for n = 0..10000</a>
%F a(n) = A000203(A002522(n)). - _Michel Marcus_, Mar 16 2018
%e a(7) = 93 because 7^2+1 = 50 and the sum of the 6 divisors { 1, 2, 5, 10, 25, 50} is 93.
%p with(numtheory):for n from 0 to 110 do:x:=divisors(n^2+1):n1:=nops(x):s:=0:for m from 1 to n1 do: s:=s+x[m]:od: printf(`%d, `, s):od:
%t Table[Total[Divisors[n^2 + 1]], {n, 0, 100}] (* _T. D. Noe_, Jul 28 2011 *)
%t DivisorSigma[1,Range[0,50]^2+1] (* _Harvey P. Dale_, Aug 03 2020 *)
%o (PARI) a(n) = sigma(n^2+1); \\ _Michel Marcus_, Mar 17 2018
%Y Cf. A000203, A002522, A193432.
%K nonn
%O 0,2
%A _Michel Lagneau_, Jul 28 2011