login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The Matula numbers of the rooted trees that have no perfect matchings.
2

%I #29 Jun 25 2024 13:12:00

%S 1,3,4,7,8,9,10,11,12,13,14,16,17,19,20,21,24,25,27,28,29,30,32,33,34,

%T 35,36,37,38,39,40,42,43,44,46,47,48,49,50,51,52,53,56,57,58,59,60,61,

%U 62,63,64,67,68,70,71,72,73,74,75,76,77,79,80,81,82,83,84,85,86,87,88,89,90,91,92,95,96,97,98,99,100

%N The Matula numbers of the rooted trees that have no perfect matchings.

%C The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T.

%C It is known that a tree has at most one perfect matching.

%C Complement of A193405.

%D C. D. Godsil, Algebraic Combinatorics, Chapman & Hall, New York, 1993.

%H É. Czabarka, L. Székely, and S. Wagner, <a href="https://doi.org/10.1016/j.dam.2009.07.004">The inverse problem for certain tree parameters</a>, Discrete Appl. Math., 157, 2009, 3314-3319.

%H Emeric Deutsch, <a href="http://arxiv.org/abs/1111.4288">Rooted tree statistics from Matula numbers</a>, arXiv:1111.4288 [math.CO], 2011.

%H F. Goebel, <a href="http://dx.doi.org/10.1016/0095-8956(80)90049-0">On a 1-1-correspondence between rooted trees and natural numbers</a>, J. Combin. Theory, B 29 (1980), 141-143.

%H I. Gutman and A. Ivic, <a href="http://dx.doi.org/10.1016/0012-365X(95)00182-V">On Matula numbers</a>, Discrete Math., 150, 1996, 131-142.

%H I. Gutman and Yeong-Nan Yeh, <a href="http://www.emis.de/journals/PIMB/067/3.html">Deducing properties of trees from their Matula numbers</a>, Publ. Inst. Math., 53 (67), 1993, 17-22.

%H D. W. Matula, <a href="http://www.jstor.org/stable/2027327">A natural rooted tree enumeration by prime factorization</a>, SIAM Rev. 10 (1968) 273.

%H <a href="/index/Mat#matula">Index entries for sequences related to Matula-Goebel numbers</a>

%F Define b(n) (c(n)) to be the generating polynomials of the matchings of the rooted tree with Matula-Goebel number n that contain (do not contain) the root, with respect to the size of the matching. We have the following recurrence for the pair M(n)=[b(n),c(n)]. M(1)=[0,1]; if n=prime(t) (=the t-th prime), then M(n)=[xc(t),b(t)+c(t)]; if n=r*s (r,s,>=2), then M(n)=[b(r)*c(s)+c(r)*b(s), c(r)*c(s)]. Then m(n)=b(n)+c(n) is the generating polynomial of the matchings of the rooted tree with respect to the size of the matchings (a modified matching polynomial). The tree has a perfect matching if and only if the degree of this polynomial is 1/2 of the number of vertices of the tree.

%e 3 and 11 are in the sequence because they are the Matula numbers of paths on 3 and 5 vertices, respectively.

%p with(numtheory): N := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then 1 elif bigomega(n) = 1 then 1+N(pi(n)) else N(r(n))+N(s(n))-1 end if end proc: M := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then [0, 1] elif bigomega(n) = 1 then [x*M(pi(n))[2], M(pi(n))[1]+M(pi(n))[2]] else [M(r(n))[1]*M(s(n))[2]+M(r(n))[2]*M(s(n))[1], M(r(n))[2]*M(s(n))[2]] end if end proc: m := proc (n) options operator, arrow: sort(expand(M(n)[1]+M(n)[2])) end proc: NPM := {}: for n to 100 do if N(n) <> 2*degree(m(n)) then NPM := `union`(NPM, {n}) else end if end do: NPM;

%t r[n_] := FactorInteger[n][[1, 1]];

%t s[n_] := n/r[n];

%t V[n_] := Which[n == 1, 1, PrimeOmega[n] == 1, 1 + V[PrimePi[n]], True, V[r[n]] + V[s[n]] - 1];

%t M[n_] := Which[n == 1, {0, 1}, PrimeOmega[n] == 1, {x*M[PrimePi[n]][[2]], Total[M[PrimePi[n]]]}, True, {M[r[n]][[1]]*M[s[n]][[2]] + M[r[n]][[2]]*M[s[n]][[1]], M[r[n]][[2]]*M[s[n]][[2]]}];

%t m[n_] := M[n] // Total // Expand;

%t NPM = {};

%t Do[If[V[n] != 2 Exponent[m[n], x], NPM = Union[NPM, {n}]], {n, 1, 100}];

%t NPM (* _Jean-François Alcover_, Jun 21 2024, after Maple code *)

%Y Cf. A061775, A193405.

%K nonn

%O 1,2

%A _Emeric Deutsch_, Feb 12 2012