login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193401
Triangle read by rows: row n contains the coefficients (of the increasing powers of the variable) of the characteristic polynomial of the Laplacian matrix of the rooted tree having Matula-Göbel number n.
2
0, 1, 0, -2, 1, 0, 3, -4, 1, 0, 3, -4, 1, 0, -4, 10, -6, 1, 0, -4, 10, -6, 1, 0, -4, 9, -6, 1, 0, -4, 9, -6, 1, 0, 5, -20, 21, -8, 1, 0, 5, -20, 21, -8, 1, 0, 5, -20, 21, -8, 1, 0, 5, -18, 20, -8, 1, 0, 5, -18, 20, -8, 1, 0, 5, -18, 20, -8, 1, 0, -6, 35, -56, 36, -10, 1, 0, 5, -16, 18, -8, 1, 0, 5, -18, 20, -8, 1
OFFSET
1,4
COMMENTS
Row n contains 1+A061775(n) entries (= 1+ number of vertices of the rooted tree).
The Matula-Göbel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Göbel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Göbel numbers of the m branches of T.
LINKS
E. Deutsch, Rooted tree statistics from Matula numbers, arXiv:1111.4288 [math.CO], 2011.
F. Göbel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
I. Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Rev. 10 (1968) 273.
FORMULA
Let T be a rooted tree with root b. If b has degree 1, then let A be the rooted tree with root c, obtained from T by deleting the edge bc emanating from the root. If b has degree >=2, then A is obtained (not necessarily in a unique way) by joining at b two trees B and C, rooted at b. It is straightforward to express the distance matrix of T in terms of the entries of the distance matrix of A (resp. of B and C). Making use of this, the Maple program (improvable!) finds recursively the distance matrices of the rooted trees with Matula-Göbel numbers 1..1000 (upper limit can be altered), then switches (easily) to the Laplacian matrices and finds the coefficients of their characteristic polynomials.
EXAMPLE
Row 4 is 0, 3, -4, 1 because the rooted tree having Matula-Goebel number 4 is V; the Laplacian matrix is [2,-1,-1; -1,1,0; -1,0,1], having characteristic polynomial x^3 - 4x^2 +3x
Triangle starts:
0, 1;
0, -2, 1;
0, 3, -4, 1;
0, 3, -4, 1;
0, -4, 10, -6, 1;
0, -4, 10, -6, 1;
0, -4, 9, -6, 1;
0, -4, 9, -6, 1;
MAPLE
with(numtheory): with(linalg): with(LinearAlgebra): DA := proc (d) local aa: aa := proc (i, j) if d[i, j] = 1 then 1 else 0 end if end proc: Matrix(RowDimension(d), RowDimension(d), aa) end proc: AL := proc (a) local ll: ll := proc (i, j) if i = j then add(a[i, k], k = 1 .. RowDimension(a)) else -a[i, j] end if end proc: Matrix(RowDimension(a), RowDimension(a), ll) end proc: V := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then 1 elif bigomega(n) = 1 then 1+V(pi(n)) else V(r(n))+V(s(n))-1 end if end proc: d := proc (n) local r, s, C, a: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: C := proc (A, B) local c: c := proc (i, j) options operator, arrow: A[1, i]+B[1, j+1] end proc: Matrix(RowDimension(A), RowDimension(B)-1, c) end proc: a := proc (i, j) if i = 1 and j = 1 then 0 elif 2 <= i and 2 <= j then dd[pi(n)][i-1, j-1] elif i = 1 then 1+dd[pi(n)][1, j-1] elif j = 1 then 1+dd[pi(n)][i-1, 1] else end if end proc: if n = 1 then Matrix(1, 1, [0]) elif bigomega(n) = 1 then Matrix(V(n), V(n), a) else Matrix(blockmatrix(2, 2, [dd[r(n)], C(dd[r(n)], dd[s(n)]), Transpose(C(dd[r(n)], dd[s(n)])), SubMatrix(dd[s(n)], 2 .. RowDimension(dd[s(n)]), 2 .. RowDimension(dd[s(n)]))])) end if end proc: for n to 1000 do dd[n] := d(n) end do: for n from 1 to 18 do seq(coeff(CharacteristicPolynomial(AL(DA(d(n))), x), x, k), k = 0 .. V(n)) end do; # yields triangle in triangular form
CROSSREFS
KEYWORD
sign,tabf
AUTHOR
Emeric Deutsch, Feb 09 2012
STATUS
approved