login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of permutations that have a fixed point and contain 123.
1

%I #30 Mar 15 2021 08:33:48

%S 0,0,0,1,1,3,11,59,369,2665,21823,199983,2028701,22577141,273551115,

%T 3585133147,50540288857,762641865009,12265883397719,209475278413895,

%U 3785852926650453,72191462591370733,1448516763956727331,30507960955933725171,672958104387944656145

%N Number of permutations that have a fixed point and contain 123.

%C A000142(n-2) gives number of permutations with a 123 present.

%C It appears that a(n) = A180191(n-2) - A018934(n-3) for n>3.

%H Alois P. Heinz, <a href="/A193364/b193364.txt">Table of n, a(n) for n = 0..200</a>

%e For n=5 we have 12345, 12354 and 41235, so a(5)=3.

%e For n=6 we have 123456, 123465, 123546, 123465, 123645, 123654, 412356, 451236, 512346, 541236 and 612354, so a(6)=11.

%p a:= proc(n) option remember;

%p `if`(n<7, [0$3, 1$2, 3, 11][n+1],

%p ((4*n^3-42*n^2+92*n+39) *a(n-1)

%p +(32*n^3-2*n^4-163*n^2+223*n+204) *a(n-2)

%p -(n-4)*(n-7)*(2*n^2-10*n-15) *a(n-3)) / (2*n^2-14*n-3))

%p end:

%p seq(a(n), n=0..30); # _Alois P. Heinz_, Jan 07 2013

%t a[n_] := a[n] = If[n<7, {0, 0, 0, 1, 1, 3, 11}[[n+1]], ((4n^3 - 42n^2 + 92n + 39) a[n-1] + (32n^3 - 2n^4 - 163n^2 + 223n + 204) a[n-2] - (n-4)(n-7) (2n^2 - 10n - 15) a[n-3])/(2n^2 - 14n - 3)];

%t a /@ Range[0, 30] (* _Jean-François Alcover_, Mar 15 2021, after _Alois P. Heinz_ *)

%Y Cf. A000142, A002467, A018934.

%K nonn

%O 0,6

%A _Jon Perry_, Dec 20 2012