Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #97 Jan 17 2024 09:12:24
%S 1,0,3,0,5,0,7,0,9,0,11,0,13,0,15,0,17,0,19,0,21,0,23,0,25,0,27,0,29,
%T 0,31,0,33,0,35,0,37,0,39,0,41,0,43,0,45,0,47,0,49,0,51,0,53,0,55,0,
%U 57,0,59,0,61,0,63,0,65,0,67,0,69,0,71,0,73,0,75
%N If n is even then 0, otherwise n.
%C Multiplicative with a(2^e)=0 if e>0 and a(p^e)=p^e for odd primes p. - _R. J. Mathar_, Aug 01 2011
%C A005408 and A000004 interleaved (the usual OEIS policy is not to include sequences like this where alternate terms are zero; this is an exception). - _Omar E. Pol_, Feb 02 2013
%C Row sums of A057211. - _Omar E. Pol_, Mar 05 2014
%C Column k=2 of triangle A196020. - _Omar E. Pol_, Aug 07 2015
%C a(n) is the determinant of the (n+2) X (n+2) circulant matrix with the first row [0,0,1,1,...,1]. This matrix is closely linked with the famous ménage problem (see also comments of Vladimir Shevelev in sequence A000179). Namely it defines the class of permutations p of 1,2,...,n+2 such that p(i)<>i and p(i)<>i+1 for i=1,2,...,n+1, and p(n+2)<>1,n+2. And a(n) is also the difference between the number of even and odd such permutations. - _Dmitry Efimov_, Feb 02 2016
%D Franz Lemmermeyer, Reciprocity Laws. From Euler to Eisenstein, Springer, 2000, p. 237, eq. (8.5).
%H Vincenzo Librandi, <a href="/A193356/b193356.txt">Table of n, a(n) for n = 1..1000</a>
%H C. Kravvaritis, <a href="http://dx.doi.org/10.2478/spma-2014-0019">Determinant evaluations for binary circulant matrices</a>, Special Matrices, V2(1) (2014), 187-199.
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,2,0,-1).
%F a(n) = n^k mod 2n, for any k>=2, also for k=n.
%F Dirichlet g.f.: (1-2^(1-s))*zeta(s-1). - _R. J. Mathar_, Aug 01 2011
%F G.f.: x*(1+x^2)/(1-x^2)^2. - _Philippe Deléham_, Feb 13 2012
%F a(n) = A027656(A042948(n-1)) = (1-(-1)^n)*n/2. - _Bruno Berselli_, Feb 19 2012
%F a(n) = n * (n mod 2). - _Wesley Ivan Hurt_, Jun 29 2013
%F G.f.: Sum_{n >= 1} A000010(n)*x^n/(1 + x^n). - _Mircea Merca_, Feb 22 2014
%F a(n) = 2*a(n-2)-a(n-4), for n>4. - _Wesley Ivan Hurt_, Aug 07 2015
%F E.g.f.: x*cosh(x). - _Robert Israel_, Feb 03 2016
%F a(n) = Product_{k=1..floor(n/2)}(sin(2*Pi*k/n))^2, for n >= 1 (with the empty product put to 1). Trivial for even n from the factor 0 for k = n/2. For odd n see, e.g., the Lemmermeyer reference, eq. (8.5) on p. 237. - _Wolfdieter Lang_, Aug 29 2016
%F a(n) = Sum_{k=1..n} (-1)^((n-k)*k). - _Rick L. Shepherd_, Sep 18 2020
%F a(n) = Sum_{k = 1..n} (-1)^(1+gcd(k,n)) = Sum_{d | n} (-1)^(d+1)*phi(n/d), where phi(n) = A000010(n). - _Peter Bala_, Jan 14 2024
%p A193356:=n->(1-(-1)^n)*n/2: seq(A193356(n), n=1..100); # _Wesley Ivan Hurt_, Aug 07 2015
%t Table[PowerMod[n,n,2*n], {n,200}]
%o (PARI) a(n)=if(n%2,n) \\ _Charles R Greathouse IV_, Jul 24 2011
%o (Magma) I:=[1,0,3,0]; [n le 4 select I[n] else 2*Self(n-2)-Self(n-4): n in [1..80]]; // _Vincenzo Librandi_, Feb 24 2014
%Y Cf. A000004, A000010, A005408, A027656, A042948, A057211, A196020.
%K nonn,easy,mult
%O 1,3
%A _José María Grau Ribas_, Jul 24 2011
%E Formula for a(n) extended by _Wolfdieter Lang_, Dec 21 2011