The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A193355 Decimal expansion of Pi/(2 + 2*sqrt(2)). 2
 6, 5, 0, 6, 4, 5, 1, 4, 2, 2, 8, 4, 2, 8, 6, 5, 0, 4, 2, 7, 6, 6, 1, 8, 8, 0, 3, 3, 9, 0, 5, 9, 5, 4, 0, 7, 2, 0, 8, 7, 2, 6, 1, 4, 5, 0, 0, 0, 2, 9, 2, 2, 0, 1, 0, 5, 5, 2, 2, 5, 5, 0, 7, 3, 2, 4, 3, 0, 9, 1, 9, 3, 4, 0, 6, 6, 3, 2, 4, 5, 5, 9, 7, 3, 6, 4, 6, 0, 5, 4, 7, 1, 1, 3, 2, 4, 0, 8, 4 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS This is the first of the three angles (in radians) of a unique triangle that is right angled and where the angles are in a harmonic progression: Pi/(2+2*sqrt(2)) (this sequence), Pi/(2+sqrt(2)) (A193373), Pi/2 (A019669). The angles (in degrees) are approximately 37.279, 52.721, 90. The common difference between the denominators of the harmonic progression is sqrt(2). LINKS G. C. Greubel, Table of n, a(n) for n = 0..10000 FORMULA Equals Pi/(2+2*sqrt(2)). EXAMPLE 0.6506451422... MAPLE evalf(Pi/(2+2*sqrt(2)), 120); # Muniru A Asiru, Sep 30 2018 MATHEMATICA N[Pi/(2 + 2*Sqrt[2]), 100] Realdigits[Pi/(2 + 2*Sqrt[2]), 10, 100][[1]] (* G. C. Greubel, Sep 29 2018 *) PROG (PARI) default(realprecision, 100); Pi/(2+2*sqrt(2)) (MAGMA) SetDefaultRealField(RealField(100)); R:= RealField(); Pi(R)/(2 + 2*Sqrt(2)); // G. C. Greubel, Sep 29 2018 CROSSREFS Sequence in context: A134103 A196621 A096434 * A248922 A316253 A261992 Adjacent sequences:  A193352 A193353 A193354 * A193356 A193357 A193358 KEYWORD easy,nonn,cons AUTHOR Frank M Jackson, Jul 24 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 18:08 EDT 2020. Contains 334630 sequences. (Running on oeis4.)