

A193355


Decimal expansion of Pi/(2 + 2*sqrt(2)).


2



6, 5, 0, 6, 4, 5, 1, 4, 2, 2, 8, 4, 2, 8, 6, 5, 0, 4, 2, 7, 6, 6, 1, 8, 8, 0, 3, 3, 9, 0, 5, 9, 5, 4, 0, 7, 2, 0, 8, 7, 2, 6, 1, 4, 5, 0, 0, 0, 2, 9, 2, 2, 0, 1, 0, 5, 5, 2, 2, 5, 5, 0, 7, 3, 2, 4, 3, 0, 9, 1, 9, 3, 4, 0, 6, 6, 3, 2, 4, 5, 5, 9, 7, 3, 6, 4, 6, 0, 5, 4, 7, 1, 1, 3, 2, 4, 0, 8, 4
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

This is the first of the three angles (in radians) of a unique triangle that is right angled and where the angles are in a harmonic progression: Pi/(2+2*sqrt(2)) (this sequence), Pi/(2+sqrt(2)) (A193373), Pi/2 (A019669). The angles (in degrees) are approximately 37.279, 52.721, 90. The common difference between the denominators of the harmonic progression is sqrt(2).


LINKS

G. C. Greubel, Table of n, a(n) for n = 0..10000


FORMULA

Equals Pi/(2+2*sqrt(2)).


EXAMPLE

0.6506451422...


MAPLE

evalf(Pi/(2+2*sqrt(2)), 120); # Muniru A Asiru, Sep 30 2018


MATHEMATICA

N[Pi/(2 + 2*Sqrt[2]), 100]
Realdigits[Pi/(2 + 2*Sqrt[2]), 10, 100][[1]] (* G. C. Greubel, Sep 29 2018 *)


PROG

(PARI) default(realprecision, 100); Pi/(2+2*sqrt(2))
(MAGMA) SetDefaultRealField(RealField(100)); R:= RealField(); Pi(R)/(2 + 2*Sqrt(2)); // G. C. Greubel, Sep 29 2018


CROSSREFS

Sequence in context: A134103 A196621 A096434 * A248922 A316253 A261992
Adjacent sequences: A193352 A193353 A193354 * A193356 A193357 A193358


KEYWORD

easy,nonn,cons


AUTHOR

Frank M Jackson, Jul 24 2011


STATUS

approved



