login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193287
E.g.f.: A(x) = 1/(1 - 2*x^2)^(1 + 1/(2*x)).
5
1, 1, 5, 19, 145, 981, 10141, 98575, 1289569, 16314121, 258568021, 4023553931, 74961787825, 1383475135069, 29636315118957, 632414472704071, 15316605861040321, 370875832116841105, 10021723060544059429, 271409166367070755843
OFFSET
0,3
COMMENTS
More generally, we have the identity:
Sum_{n>=0} (x^n/n!)*Product_{k=1..n} (1+k*y) = 1/(1 - x*y)^(1 + 1/y); here y=2*x.
LINKS
FORMULA
E.g.f.: A(x) = Sum_{n>=0} x^n/n! * Product_{k=1..n} (1 + 2*k*x).
a(n) ~ n! * 2^(n/2-1/2-1/sqrt(2))*n^(1/sqrt(2))/Gamma(1/sqrt(2)). - Vaclav Kotesovec, Jun 25 2013
EXAMPLE
E.g.f.: A(x) = 1 + x + 5*x^2/2! + 19*x^3/3! + 145*x^4/4! + 981*x^5/5! +...
where A(x) satisfies:
A(x)^(2*x/(1+2*x)) = 1 + 2*x^2 + 4*x^4 + 8*x^6 + 16*x^8 + 32*x^10 +...
Also,
A(x) = 1 + x*(1+2*x) + x^2*(1+2*x)*(1+4*x)/2! + x^3*(1+2*x)*(1+4*x)*(1+6*x)/3! + x^4*(1+2*x)*(1+4*x)*(1+6*x)*(1+8*x)/4! +...
The logarithm begins:
log(A(x)) = x + 2*x^2 + 2*x^3/2 + 4*x^4/2 + 4*x^5/3 + 8*x^6/3 + 8*x^7/4 +...
a(0) = 1; a(n) = (n-1)! * Sum_{k=1..n} k * 2^floor(k/2)/floor((k+1)/2) * a(n-k)/(n-k)!. - Seiichi Manyama, Apr 30 2022
MATHEMATICA
CoefficientList[Series[1/(1-2*x^2)^(1+1/(2*x)), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 25 2013 *)
PROG
(PARI) {a(n)=n!*polcoeff(1/(1 - 2*x^2 +x^2*O(x^n))^((1+2*x)/(2*x)), n)}
(PARI) {a(n)=n!*polcoeff(sum(m=0, n, x^m/m!*prod(k=1, m, 1+2*k*x+x*O(x^n))), n)}
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=1, i, j*2^(j\2)/((j+1)\2)*v[i-j+1]/(i-j)!)); v; \\ Seiichi Manyama, Apr 30 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 21 2011
STATUS
approved