login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (n!/floor(n/2)!)^2.
3

%I #19 Sep 08 2022 08:45:58

%S 1,1,4,36,144,3600,14400,705600,2822400,228614400,914457600,

%T 110649369600,442597478400,74798973849600,299195895398400,

%U 67319076464640000,269276305858560000,77820852393123840000,311283409572495360000,112373310855670824960000

%N a(n) = (n!/floor(n/2)!)^2.

%H Vincenzo Librandi, <a href="/A193282/b193282.txt">Table of n, a(n) for n = 0..400</a>

%F a(n) = A056040(n)*A000142(n).

%F a(n) = A081125(n)^2.

%F a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*A195009(n,k).

%F a(n) = n!^2*[x^n] (1+x)*BesselI(0,2*x). Here [x^n]f(x) denotes the coefficient of x^n in f(x).

%F Conjecture: a(n) + 8*a(n-1) - 4*(n-2)*(n+2)*a(n-2) + 16*(-2*n^2 + 6*n - 3)*a(n-3) - 64*(n-3)^2*a(n-4) = 0. - _R. J. Mathar_, Oct 03 2014

%p A193282 := n -> (n!/iquo(n,2)!)^2;

%t Table[(n!/(Floor[n/2]!))^2,{n,0,20}] (* _Harvey P. Dale_, Jul 30 2020 *)

%o (Magma) [(Factorial(n)/Factorial(Floor(n/2)))^2: n in [0..20]]; // _Vincenzo Librandi_, Sep 11 2011

%Y Cf. A000142, A056040, A195009.

%K nonn

%O 0,3

%A _Peter Luschny_, Sep 08 2011