Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Nov 02 2021 22:11:48
%S 1,-3,2,0,1,-12,63,-190,363,-455,370,-180,40,0,1,-39,732,-8806,76293,
%T -507084,2689452,-11689056,42424338,-130362394,342624075,-776022242,
%U 1522861581,-2598606825,3863562996,-5007519752,5652058863,-5541107684,4697231261
%N Triangle T(n,k), n>=1, 0<=k<=3^n, read by rows: row n gives the coefficients of the chromatic polynomial of the Hanoi graph H_n, highest powers first.
%C The Hanoi graph H_n has 3^n vertices and 3*(3^n-1)/2 edges. It represents the states and allowed moves in the Towers of Hanoi problem with n disks. The chromatic polynomial of H_n has 3^n+1 coefficients.
%H Alois P. Heinz, <a href="/A193233/b193233.txt">Rows n = 1..6, flattened</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ChromaticPolynomial.html">Chromatic Polynomial</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HanoiGraph.html">Hanoi Graph</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Chromatic_polynomial">Chromatic Polynomial</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Tower_of_Hanoi">Tower of Hanoi</a>
%e 2 example graphs: o
%e . / \
%e . o---o
%e . / \
%e . o o o
%e . / \ / \ / \
%e . o---o o---o---o---o
%e Graph: H_1 H_2
%e Vertices: 3 9
%e Edges: 3 12
%e The Hanoi graph H_1 equals the cycle graph C_3 with chromatic polynomial
%e q^3 -3*q^2 +2*q => [1, -3, 2, 0].
%e Triangle T(n,k) begins:
%e 1, -3, 2, 0;
%e 1, -12, 63, -190, 363, -455, ...
%e 1, -39, 732, -8806, 76293, -507084, ...
%e 1, -120, 7113, -277654, 8028540, -183411999, ...
%e 1, -363, 65622, -7877020, 706303350, -50461570575, ...
%e 1, -1092, 595443, -216167710, 58779577593, -12769539913071, ...
%e ...
%Y Cf. A000244, A029858.
%Y Cf. A288839 (chromatic polynomials of the n-Hanoi graph).
%Y Cf. A137889 (directed Hamiltonian paths in the n-Hanoi graph).
%Y Cf. A288490 (independent vertex sets in the n-Hanoi graph).
%Y Cf. A286017 (matchings in the n-Hanoi graph).
%Y Cf. A193136 (spanning trees of the n-Hanoi graph).
%Y Cf. A288796 (undirected paths in the n-Hanoi graph).
%K sign,tabf,look,hard
%O 1,2
%A _Alois P. Heinz_, Jul 18 2011