login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Decimal expansion of the constant term of the reduction of (cos(x))^2 by x^2->x+1.
3

%I #10 Jan 19 2022 05:37:53

%S 4,8,1,2,7,6,6,6,1,3,1,5,0,7,0,8,0,3,0,0,6,9,7,2,2,2,2,9,6,1,1,3,4,3,

%T 9,6,9,5,8,4,7,1,5,9,4,6,4,5,7,5,4,6,2,0,7,2,7,6,6,6,3,0,6,2,5,3,0,0,

%U 2,7,9,3,1,2,4,7,4,4,3,9,1,6,8,7,1,7,8,9,4,4,7,5,9,8,6,8,4,5,3,0

%N Decimal expansion of the constant term of the reduction of (cos(x))^2 by x^2->x+1.

%C Reduction of a function f(x) by a substitution q(x)->s(x) is introduced at A193010.

%F From _Amiram Eldar_, Jan 19 2022: (Start)

%F Equals 1 - A193089.

%F Equals 1 + Sum_{k>=1} (-1)^k * 2^(2*k-1) * Fibonacci(2*k-1)/(2*k)!.

%F Equals 1 + (cos(2*phi) - 2*phi^2*sin(phi-1)^2 - 1)/(5+sqrt(5)), where phi is the golden ratio (A001622). (End)

%e 0.48127666131507080300697222296113439695...

%t f[x_] := Cos[x]^2; r[n_] := Fibonacci[n];

%t c[n_] := SeriesCoefficient[Series[f[x], {x, 0, n}], n]

%t u0 = N[Sum[c[n]*r[n - 1], {n, 0, 100}], 100]

%t RealDigits[u0, 10]

%Y Cf. A000045, A001622, A193010, A192232, A193088, A193089.

%K nonn,cons

%O 0,1

%A _Clark Kimberling_, Jul 15 2011