Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Jun 13 2015 00:53:55
%S 1,1,9,29,75,165,331,623,1123,1963,3357,5651,9405,15525,25477,41633,
%T 67831,110281,179031,290339,470511,762111,1234009,1997639,3233305,
%U 5232745,8468001,13702853,22173123,35878413,58054147,93935351,151992475
%N Constant term of the reduction by x^2->x+1 of the polynomial p(n,x) defined at Comments.
%C The titular polynomials are defined recursively: p(n,x)=x*p(n-1,x)+n^3, with p(0,x)=1. For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232 and A192744.
%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (4,-5,1,2,-1).
%F a(n) = 4*a(n-1)-5*a(n-2)+a(n-3)+2*a(n-4)-a(n-5).
%F G.f.: (x^4-3*x^3+10*x^2-3*x+1) / ((x-1)^3*(x^2+x-1)). - _Colin Barker_, May 12 2014
%t q = x^2; s = x + 1; z = 40;
%t p[0, x] := 1;
%t p[n_, x_] := x*p[n - 1, x] + n^3;
%t Table[Expand[p[n, x]], {n, 0, 7}]
%t reduce[{p1_, q_, s_, x_}] :=
%t FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
%t t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
%t u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A193004 *)
%t u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A193005 *)
%o (PARI) Vec((x^4-3*x^3+10*x^2-3*x+1)/((x-1)^3*(x^2+x-1)) + O(x^100)) \\ _Colin Barker_, May 12 2014
%Y Cf. A192232, A192744, A192951, A193005.
%K nonn,easy
%O 0,3
%A _Clark Kimberling_, Jul 14 2011