Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Sep 08 2022 08:45:58
%S 0,1,1,4,11,27,58,115,215,386,673,1149,1932,3213,5301,8696,14207,
%T 23143,37622,61071,99035,160486,259941,420889,681336,1102777,1784713,
%U 2888140,4673555,7562451,12236818,19800139,32037887,51839018,83877961
%N Coefficient of x in the reduction by x^2 -> x+1 of the polynomial p(n,x) defined at Comments.
%C The titular polynomials are defined recursively: p(n,x) = x*p(n-1,x) - n + n^2, with p(0,x)=1. For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232 and A192744.
%H G. C. Greubel, <a href="/A192965/b192965.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (4,-5,1,2,-1).
%F a(n) = 4*a(n-1) - 5*a(n-2) + a(n-3) + 2*a(n-4) - a(n-5).
%F G.f.: x*(1 -3*x +5*x^2 -x^3)/((1-x-x^2)*(1-x)^3). - _R. J. Mathar_, May 11 2014
%F a(n) = Fibonacci(n+4) + 3*Fibonacci(n+2) - (n^2 + 3*n + 6). - _G. C. Greubel_, Jul 11 2019
%t (* First program *)
%t q = x^2; s = x + 1; z = 40;
%t p[0, x]:= 1;
%t p[n_, x_]:= x*p[n-1, x] + n(n-1);
%t Table[Expand[p[n, x]], {n, 0, 7}]
%t reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
%t t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
%t u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192964 *)
%t u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192965 *)
%t (* Second program *)
%t With[{F=Fibonacci}, Table[F[n+4]+3*F[n+2] -(n^2+3*n+6), {n,0,40}]] (* _G. C. Greubel_, Jul 11 2019 *)
%o (PARI) vector(40, n, n--; f=fibonacci; f(n+4)+3*f(n+2)-(n^2+3*n+6)) \\ _G. C. Greubel_, Jul 11 2019
%o (Magma) F:=Fibonacci; [F(n+4) +3*F(n+2) -(n^2+3*n+6): n in [0..40]]; // _G. C. Greubel_, Jul 11 2019
%o (Sage) f=fibonacci; [f(n+4) +3*f(n+2) -(n^2+3*n+6) for n in (0..40)] # _G. C. Greubel_, Jul 11 2019
%o (GAP) F:=Fibonacci;; List([0..40], n-> F(n+4) +3*F(n+2) -(n^2+3*n+6)); # _G. C. Greubel_, Jul 11 2019
%Y Cf. A000045, A192232, A192744, A192951, A192964.
%K nonn
%O 0,4
%A _Clark Kimberling_, Jul 13 2011