login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Constant term of the reduction by x^2 -> x+1 of the polynomial p(n,x) defined at Comments.
3

%I #21 Sep 08 2022 08:45:58

%S 1,2,7,15,30,55,97,166,279,463,762,1247,2033,3306,5367,8703,14102,

%T 22839,36977,59854,96871,156767,253682,410495,664225,1074770,1739047,

%U 2813871,4552974,7366903,11919937,19286902,31206903,50493871,81700842

%N Constant term of the reduction by x^2 -> x+1 of the polynomial p(n,x) defined at Comments.

%C The titular polynomials are defined recursively: p(n,x) = x*p(n-1,x) + n + n^2, with p(0,x)=1. For an introduction to reductions of polynomials by substitutions such as x^2 -> x+1, see A192232 and A192744.

%H Vincenzo Librandi, <a href="/A192962/b192962.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2,-1,1).

%F a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4).

%F From _R. J. Mathar_, May 09 2014: (Start)

%F G.f.: x*(1 -x +3*x^2 -x^3)/((1-x-x^2)*(1-x)^2).

%F a(n) -2*a(n-1) + a(n-2) = A022120(n-4). (End)

%F a(n) = 3*Fibonacci(n+1) + 4*Fibonacci(n) - 2*(n+2). - _G. C. Greubel_, Jul 12 2019

%t (* First program *)

%t q = x^2; s = x + 1; z = 40;

%t p[0, x]:= 1;

%t p[n_, x_]:= x*p[n-1, x] + n(n+1);

%t Table[Expand[p[n, x]], {n, 0, 7}]

%t reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]

%t t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];

%t u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192962 *)

%t u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192963 *)

%t (* Additional programs *)

%t CoefficientList[Series[(1-x+3x^2-x^3)/((1-x-x^2)(1-x)^2), {x, 0, 40}], x] (* _Vincenzo Librandi_, May 09 2014 *)

%t With[{F=Fibonacci}, Table[3*F[n+1]+4*F[n] -2*(n+2), {n,1,40}]] (* _G. C. Greubel_, Jul 12 2019 *)

%o (PARI) vector(40, n, f=fibonacci; 3*f(n+1)+4*f(n)-2*(n+2)) \\ _G. C. Greubel_, Jul 1122019

%o (Magma) F:=Fibonacci; [3*F(n+1) +4*F(n) -2*(n+2): n in [1..40]]; // _G. C. Greubel_, Jul 12 2019

%o (Sage) f=fibonacci; [3*f(n+1) +4*f(n) -2*(n+2) for n in (1..40)] # _G. C. Greubel_, Jul 12 2019

%o (GAP) F:=Fibonacci;; List([1..40], n-> 3*F(n+1) +4*F(n) -2*(n+2)); # _G. C. Greubel_, Jul 12 2019

%Y Cf. A000045, A192232, A192744, A192951, A192963.

%K nonn

%O 1,2

%A _Clark Kimberling_, Jul 13 2011