Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Dec 04 2016 11:08:35
%S 1,1,2,5,15,52,203,877,4140,21147,115975,678569,4213555,27643388,
%T 190878823,1382610179,10474709625,82784673008,680933897225,
%U 5816811952612,51505026270176
%N Number of set partitions of {1, ..., n} that avoid enhanced 6-crossings (or enhanced 6-nestings).
%H M. Bousquet-Mélou and G. Xin, <a href="http://arXiv.org/abs/math.CO/0506551">On partitions avoiding 3-crossings</a>, math.CO/0506551.
%H Sophie Burrill, Sergi Elizalde, Marni Mishna and Lily Yen, <a href="http://arxiv.org/abs/1108.5615">A generating tree approach to k-nonnesting partitions and permutations</a>, arXiv preprint arXiv:1108.5615, 2011
%H W. Chen, E. Deng, R. Du, R. P. Stanley, and C. Yan, <a href="http://arXiv.org/abs/math.CO/0501230">Crossings and nestings of matchings and partitions</a>, math.CO/0501230
%e There are 678570 partitions of 11 elements, but a(11)=678569 because the partition {1,11}{2,10}{3,9}{4,8}{5,9}{6} has an enhanced 6-nesting.
%Y Cf. A000110, A108307, A192855, A192865.
%K nonn
%O 0,3
%A _Marni Mishna_, Jul 11 2011