|
|
A192654
|
|
Alternating partial sums of the Floor-Sqrt transform of Catalan numbers.
|
|
1
|
|
|
1, 0, 1, 1, 2, 4, 7, 13, 24, 45, 84, 158, 298, 563, 1072, 2041, 3905, 7481, 14373, 27665, 53354, 103062, 199398, 386314, 749425, 1455557, 2830158, 5508520, 10731798, 20926411, 40839165, 79761979, 155894688, 304904759, 596729336, 1168571061, 2289723082, 4488979177, 8805149707
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,5
|
|
LINKS
|
|
|
FORMULA
|
a(n) = Sum_{k=0..n} (-1)^(n-k)*floor(sqrt(binomial(2*k,k)/(k+1))).
|
|
MATHEMATICA
|
Table[Sum[(-1)^(n-k)Floor[Sqrt[Binomial[2k, k]/(k+1)]], {k, 0, n}], {n, 0, 40}]
RecurrenceTable[{a[0] == 1, a[n] == Floor[Sqrt[CatalanNumber[n]]] - a[n - 1]}, a, {n, 30}] (* Jon Maiga, Nov 16 2018 *)
|
|
PROG
|
(Maxima) makelist(sum((-1)^(n-k)*floor(sqrt(binomial(2*k, k)/(k+1))), k, 0, n), n, 0, 24);
(PARI) vector(40, n, n--; sum(k=0, n, (-1)^(n-k)*floor( sqrt(binomial(2*k, k)/(k+1))))) \\ G. C. Greubel, Nov 16 2018
(Magma) [(&+[(-1)^(n-k)*Floor(Sqrt(Binomial(2*k, k)/(k+1))): k in [0..n]]) : n in [0..40]]; // G. C. Greubel, Nov 16 2018
(Sage) [sum((-1)^(n-k+1)*floor(sqrt(binomial(2*k, k)/(k+1))) for k in range(n)) for n in (1..40)] # G. C. Greubel, Nov 16 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|