login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=0..n} abs(Stirling1(n+1,k+1))*Stirling2(n+1,k+1)*k!.
2

%I #13 May 26 2021 02:23:49

%S 1,2,13,161,3148,87784,3274640,156359874,9252910816,662065322016,

%T 56172251821992,5562573507747288,634574662217269824,

%U 82482896750780978880,12101565966159294983808,1987899464090970683668944,363036441677797499946379776

%N a(n) = Sum_{k=0..n} abs(Stirling1(n+1,k+1))*Stirling2(n+1,k+1)*k!.

%H Stefano Spezia, <a href="/A192563/b192563.txt">Table of n, a(n) for n = 0..270</a>

%t Table[Sum[Abs[StirlingS1[n+1,k+1]]StirlingS2[n+1,k+1]k!,{k,0,n}],{n,0,100}]

%o (Maxima) makelist(sum(abs(stirling1(n+1,k+1))*stirling2(n+1,k+1)*k!,k,0,n),n,0,12);

%Y Diagonal of the array A344639.

%Y Cf. A000142, A008275, A008277, A081048.

%K nonn

%O 0,2

%A _Emanuele Munarini_, Jul 04 2011