login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Coefficients of a mock theta function.
1

%I #18 Jan 13 2024 04:55:47

%S 1,1,2,3,4,5,7,9,12,16,19,24,31,37,46,57,68,83,101,120,143,171,202,

%T 239,283,331,388,455,529,616,716,827,957,1105,1270,1460,1676,1918,

%U 2193,2506,2854,3248,3695,4191,4752,5382,6082,6870,7752,8732,9829

%N Coefficients of a mock theta function.

%H Vaclav Kotesovec, <a href="/A192433/b192433.txt">Table of n, a(n) for n = 0..10000</a>

%H K. Bringmann, K. Hikami and J. Lovejoy, <a href="https://lovejoy.perso.math.cnrs.fr/WRTmock5.pdf">On the modularity of the unified WRT invariants of certain Seifert manifolds</a>

%H K. Bringmann, K. Hikami, and J. Lovejoy, <a href="https://doi.org/10.1016/j.aam.2009.12.004">On the modularity of the unified WRT invariants of certain Seifert manifolds</a>, Adv. Appl. Math. 46 (2011), 86-93.

%F a(n) = A053251(2*n+1).

%F a(n) ~ exp(Pi*sqrt(n/3)) / (4*sqrt(2*n)). - _Vaclav Kotesovec_, Jun 12 2019

%o (PARI) N=66; q='q+O('q^N); gf=sum(n=0,N,q^n*prod(k=1,2*n,1+q^k)); Vec(gf) \\ _Joerg Arndt_, Jul 01 2011

%Y Cf. A053251.

%K nonn

%O 0,3

%A _Jeremy Lovejoy_, Jun 30 2011