login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = abs(a(n-1) - 3*a(n-2)) with a(1)=a(2)=1.
1

%I #18 Dec 16 2021 12:40:00

%S 1,1,2,1,5,2,13,7,32,11,85,52,203,47,562,421,1265,2,3793,3787,7592,

%T 3769,19007,7700,49321,26221,121742,43079,322147,192910,773531,194801,

%U 2125792,1541389,4835987,211820,14296141,13660681,29227742,11754301

%N a(n) = abs(a(n-1) - 3*a(n-2)) with a(1)=a(2)=1.

%H Harvey P. Dale, <a href="/A192263/b192263.txt">Table of n, a(n) for n = 1..1000</a>

%e a(3)=abs(1-3*1)=2, a(4)=abs(2-3*1)=1, a(5)=abs(1-3*2)=5, a(6)=abs(5-3*1)=2, a(7)=abs(2-3*5)=13.

%p A192263 := proc(n) option remember; if n <=2 then 1; else abs(procname(n-1)-3*procname(n-2)) ; end if; end proc: # _R. J. Mathar_, Jul 12 2011

%t nxt[{a_,b_}]:={b,Abs[b-3a]}; NestList[nxt,{1,1},40][[All,1]] (* _Harvey P. Dale_, Dec 16 2021 *)

%o (MATLAB) % n = number of computed terms of sequence. Beware of 64bit restrictions of MATLAB integers and floating point numbers

%o a(1)=1 ; a(2)=1 ;

%o for i=3:n,

%o a(i) = abs(a(i-1)-3*a(i-2)) ;

%o end

%o (PARI) N=66; v=vector(N); /* that many terms */

%o v[1]=1; v[2]=1; for(n=3,N,v[n]=abs(abs(v[n-1] - 3*v[n-2])));

%o v /* show terms */ /* _Joerg Arndt_, Jul 02 2011 */

%K nonn,easy

%O 1,3

%A _Pasi Airikka_, Jun 27 2011