Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #49 Jan 25 2013 16:25:21
%S 16,90,55,233,55,1,54,16,56,34,55,1,70,90,128,70,56,34,55,1,70,1,55,
%T 34,56,70,128,90,70,1,55,34,56,16,54,1,55,233,55,90,16,54,1,1,54,16,
%U 90,55,233,55,1,54,16,56,34,55,1,70,90,128,70,56,34,55,1,70
%N a(n) is difference of indices of terms >= 9 in A187824.
%C The repeat cycle contains 45 numbers which have 22 Fibonacci numbers symmetrically distributed as below.
%C 1 F(1), F(2)
%C 54
%C 16
%C 90
%C 55 F(10)
%C 233 F(13)
%C 55 F(10)
%C 1 F(1), F(2)
%C 54
%C 16
%C 56
%C 34 F(9)
%C 55 F(10)
%C 1 F(1), F(2)
%C 70
%C 90
%C 128
%C 70
%C 56
%C 34 F(9)
%C 55 F(10)
%C 1 F(1), F(2)
%C 70
%C 1 F(1), F(2)
%C 55 F(10)
%C 34 F(9)
%C 56
%C 70
%C 128
%C 90
%C 70
%C 1 F(1), F(2)
%C 55 F(10)
%C 34 F(9)
%C 56
%C 16
%C 54
%C 1 F(1), F(2)
%C 55 F(10)
%C 233 F(13)
%C 55 F(10)
%C 90
%C 16
%C 54
%C 1 F(1), F(2)
%e For A187824(m(i)) >= 9:
%e m(1) = 55, m(2) = 71, m(3) = 161, m(4) = 216,
%e ...
%e a(1) = 71 - 55 = 16, a(2) = 161 - 71 = 90,
%e a(3) = 216 - 161 = 55,
%e ...
%t A187824[n_ /; n > 1] := Catch[For[k = 4, True, k++, m = Mod[n, k, -Floor[k/2]]; If[m != m^3, Throw[k - 1]]]]; Differences[Select[Range[2, 6000], A187824[#] >= 9 &] ] (* _Jean-François Alcover_, Jan 09 2013 *)
%o (Small Basic)
%o j = 1
%o For n = 1 To 2000
%o For m = 1 To 100
%o I = Math.Round(n/m)
%o D = Math.Abs(n-I*m)
%o If D > 1 Then
%o a = m - 1
%o Goto OUT
%o Else
%o EndIf
%o EndFor
%o OUT:
%o If a >= 9 Then 'Filter for A187824 >= 9
%o mm[j] = n
%o j = j + 1
%o Else
%o EndIf
%o EndFor
%o For ii = 1 to j
%o aa[ii] = mm[ii+1] - mm[ii]
%o TextWindow.Write(ii+" ")
%o TextWindow.Write(aa[ii]+" ")
%o TextWindow.WriteLine(" ")
%o EndFor
%Y Cf. A187824.
%K nonn
%O 1,1
%A _Kival Ngaokrajang_, Dec 31 2012