login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A192128 Number of set partitions of {1, ..., n} that avoid 7-nestings 0
1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597, 27644437, 190899321, 1382958475, 10480139391, 82864788832, 682074818390, 5832698911490 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

This is equal to the number of set partitions of {1, ..., n} that avoid 7-crossings.

The first 14 terms coincide with terms of A000110. Without avoidance of 7-crossings, the two sequences would be identical. [Alexander R. Povolotsky, Sep 19 2011]

LINKS

Table of n, a(n) for n=0..19.

M. Bousquet-Mélou and G. Xin, On partitions avoiding 3-crossings, arXiv:math/0506551 [math.CO], 2005-2006.

Sophie Burrill, Sergi Elizalde, Marni Mishna and Lily Yen, A generating tree approach to k-nonnesting partitions and permutations, arXiv preprint arXiv:1108.5615 [math.CO], 2011.

W. Chen, E. Deng, R. Du, R. Stanley, and C. Yan, Crossings and nestings of matchings and partitions, arXiv:math/0501230 [math.CO], 2005.

M. Mishna and L. Yen, Set partitions with no k-nesting, arXiv:1106.5036 [math.CO], 2011-2012.

EXAMPLE

There are 190899322 partitions of 14 elements, but a(14)=190899321 because the partition {1,14}{2,13}{3,12}{4,11}{5,10}{6,9}{7,8} has a 7-nesting.

CROSSREFS

Cf. A000110.

Sequence in context: A203642 A192867 A203643 * A203644 A203645 A203646

Adjacent sequences:  A192125 A192126 A192127 * A192129 A192130 A192131

KEYWORD

nonn,more

AUTHOR

Marni Mishna, Jun 23 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 19 13:38 EDT 2018. Contains 316361 sequences. (Running on oeis4.)