%I #18 May 13 2017 15:27:36
%S 7654350,40209840,156637140,576841320,1851589872,5544758076,
%T 14686598520,35723706480,75818872580,144536922420,242305860072,
%U 370664737190,506699655660,643405035240,746030515164,812426918688,833352979140,795923308950,741556189440,644098507272,547387431756,444670121610,349922192400,268690544925,197063378424,147497181678,99290917440,73672276095,45746253960,32550841950,19313040780
%N Number of distinct (unordered) pairs of partitions of a 12-element set that have Rand distance n.
%C The Rand distance of a pair of set partitions is the number of unordered pairs {x; y} such that there is a block in one partition containing both x and y, but x and y are in different blocks in the other partition.
%H F. Ruskey and J. Woodcock, <a href="http://webhome.cs.uvic.ca/~ruskey/Publications/RandDist/RandDist.html">The Rand and block distances of pairs of set partitions</a>, Combinatorial algorithms, 287-299, Lecture Notes in Comput. Sci., 7056, Springer, Heidelberg, 2011.
%Y Cf. A192100 for set sizes 2..7. A192098 and A192102-A192104 for set sizes 8..11.
%K nonn,fini
%O 1,1
%A _Frank Ruskey_ and Yuji Yamauchi (eugene.uti(AT)gmail.com), Aug 08 2011