Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Jan 01 2023 09:47:29
%S 1,5,29,44,66,126,238,490,922,1714,3306,6246,12102,22994,43682,83810,
%T 159154,305062,581382,1108362,2119602,4037338,7716554,14720142,
%U 28084702,53639778,102298794,195341594,372753634,711338798,1357975774
%N Number of tatami tilings of a 4 X n grid (with monomers allowed).
%C A tatami tiling consists of dimers (1 X 2) and monomers (1 X 1) where no four meet at a point.
%H Alois P. Heinz, <a href="/A192090/b192090.txt">Table of n, a(n) for n = 0..1000</a>
%H A. Erickson, F. Ruskey, M. Schurch and J. Woodcock, <a href="https://doi.org/10.37236/596">Monomer-Dimer Tatami Tilings of Rectangular Regions</a>, Electronic Journal of Combinatorics, 18(1) (2011) P109, 24 pages.
%F G.f.: -13 + 3*x + 3*x^2 + 2*x^3 + (14 - 12*x + 10*x^2 + 10*x^4 - 104*x^5 + 114*x^6 - 80*x^7 + 34*x^8 + 12*x^9 - 2*x^10)/(1 - x - x^2 - x^3 + x^4 - 7*x^5 + 7*x^6 - x^7 + x^8 + x^9 + x^10 - x^11).
%e Here are some tatami tilings of the 4 X 3 grid:
%e _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
%e |_ _| |_| |_| |_ _| | |_ _| | |_| |_ _|
%e |_ _|_| | | |_|_ _| |_| |_|_| | |_|_ _|
%e |_|_ _|_| |_|_ _|_| |_|_|_ _| |_|_ _|_|
%Y Cf. A180970, (3 X n grid), A192091 (5 X n grid), row sums of A272473.
%K nonn,easy
%O 0,2
%A _Frank Ruskey_ and Yuji Yamauchi (eugene.uti(AT)gmail.com), Jun 23 2011