%I #7 Dec 27 2024 20:22:31
%S 1,0,0,-216,0,0,-46656,0,0,-64665216,0,0,-99769190400,0,0,
%T -209379250944000,0,0,-509919494798794752,0,0,-1418277076317722640384,
%U 0,0,-4383492791601029274796032,0,0,-14847316831212641665639907328,0,0,-54539904643021932808281375375360,0,0
%N G.f. C(C(x)) where C(x) satisfies: C(C(x)) + S(S(x)) = x such that C(x)^3 + (3/2)*S(x)^3 = x^3.
%F Functions C(x) and S(x) satisfy:
%F (1) C'(C(x)) *C'(x) + S'(S(x)) *S'(x) = 1,
%F (2) C(x)^2 *C'(x) + (3/2)*S(x)^2 *S'(x) = x^2.
%e G.f.: C(C(x)) = x - 216*x^4 - 46656*x^7 - 64665216*x^10 - 99769190400*x^13 - 209379250944000*x^16 -...
%e Related expansions:
%e S(S(x)) = 216*x^4 + 46656*x^7 + 64665216*x^10 + 99769190400*x^13 + 209379250944000*x^16 +...
%e S(x) = 6*x^2 + 648*x^5 + 793152*x^8 + 1262231424*x^11 + 2646377775360*x^14 + 6519085424584704*x^17 +...
%e C(x) = x - 108*x^4 - 46656*x^7 - 56267136*x^10 - 91334158848*x^13 - 187875634540032*x^16 -...
%e C(x)^3 = x^3 - 324*x^6 - 104976*x^9 - 139828032*x^12 - 232643612160*x^15 - 491365348803072*x^18 -...
%e S(x)^3 = 216*x^6 + 69984*x^9 + 93218688*x^12 + 155095741440*x^15 + 327576899202048*x^18 +...
%o (PARI) {a(n)=local(C=x, S=6*x^2, Cv=[1,0,0,-108]);
%o for(i=0, n\3, Cv=concat(Cv, [0, 0, 0]); C=x*Ser(Cv);S=((x^3-C^3)*2/3)^(1/3);
%o Cv[#Cv]=-polcoeff((subst(C, x, C)+subst(S, x, S))*3/2, #Cv); ); polcoeff(subst(C,x,C), n)}
%Y Cf. A192071 (C(x)), A192072 (S(x)); variants: A192059, A191419.
%K sign
%O 1,4
%A _Paul D. Hanna_, Jun 22 2011