login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A192042 Decimal approximation of x such that f(x)=3/2, where f is the Fibonacci function described in Comments. 1
2, 5, 0, 9, 3, 9, 4, 9, 1, 6, 3, 5, 4, 6, 8, 7, 0, 9, 2, 0, 5, 6, 3, 8, 9, 8, 4, 4, 6, 7, 9, 3, 5, 1, 3, 0, 1, 4, 8, 6, 9, 0, 7, 4, 1, 4, 9, 8, 4, 5, 1, 3, 2, 1, 2, 5, 3, 4, 6, 4, 1, 4, 7, 3, 9, 7, 3, 7, 7, 2, 3, 2, 1, 8, 8, 8, 8, 4, 0, 1, 1, 2, 1, 8, 1, 8, 9, 7, 5, 9, 4, 8, 7, 1, 6, 7, 3, 2, 4, 0 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

f(x)=(r^x-r^(-x*cos[pi*x]))/sqrt(5), where r=(golden ratio)=(1+sqrt(5))/2.  This function, a variant of the Binet formula, gives Fibonacci numbers for integer values of x; e.g., f(3)=2, f(4)=3, f(5)=5.

LINKS

Table of n, a(n) for n=1..100.

EXAMPLE

2.50939491635468709205638984467935130148690741498451

MATHEMATICA

r = GoldenRatio; s = 1/Sqrt[5];

f[x_] := s (r^x - r^-x Cos[Pi x]);

x /. FindRoot[Fibonacci[x] == 3/2, {x, 5}, WorkingPrecision -> 100]

RealDigits[%, 10]

(Show[Plot[#1, #2], ListPlot[Table[{x, #1}, #2]]] &)[

Fibonacci[x], {x, -7, 7}]

(* Peter J. C. Moses, Jun 21 2011 *)

CROSSREFS

Cf. A192038.

Sequence in context: A111466 A308715 A201745 * A214119 A324611 A260327

Adjacent sequences:  A192039 A192040 A192041 * A192043 A192044 A192045

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Jun 21 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 26 02:14 EDT 2021. Contains 348256 sequences. (Running on oeis4.)