login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{d|n} Kronecker(-14, d) with a(0) = 2.
1

%I #28 Dec 16 2023 09:01:10

%S 2,1,1,2,1,2,2,1,1,3,2,0,2,2,1,4,1,0,3,2,2,2,0,2,2,3,2,4,1,0,4,0,1,0,

%T 0,2,3,0,2,4,2,0,2,0,0,6,2,0,2,1,3,0,2,0,4,0,1,4,0,2,4,2,0,3,1,4,0,0,

%U 0,4,2,2,3,0,0,6,2,0,4,2,2,5,0,2,2,0,0,0,0,0,6,2,2,0,0,4,2,0,1,0,3,2,0,0,2

%N a(n) = Sum_{d|n} Kronecker(-14, d) with a(0) = 2.

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%H G. C. Greubel, <a href="/A192006/b192006.txt">Table of n, a(n) for n = 0..10000</a>

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>, 2019.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>.

%F Expansion of q * f(q^2) * f(q^7) / (chi(q) * chi(q^14)) + 2 * psi(q^4) * phi(-q^7) * chi(-q^14) / chi(-q^2) in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions.

%F G.f. is a period 1 Fourier series which satisfies f(-1 / (56 t)) = 56^(1/2) (t/i) f(t) where q = exp(2 Pi i t).

%F a(n) is multiplicative with a(0) = 2, a(p^e) = (1 - q^e) / (1 - q) where q = p * Kronecker( -14, p).

%F a(n) = A035176(n) unless n=0.

%F Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*Pi/sqrt(14) = 1.679251... . - _Amiram Eldar_, Dec 16 2023

%e G.f. = 2 + q + q^2 + 2*q^3 + q^4 + 2*q^5 + 2*q^6 + q^7 + q^8 + 3*q^9 + 2*q^10 + ...

%t a[ n_] := If[ n < 1, 2 * Boole[ n==0], Sum[ KroneckerSymbol[ -14, d], { d, Divisors[ n]}]];

%o (PARI) {a(n) = if( n<1, 2 * (n==0), sumdiv( n, d, kronecker( -14, d)))};

%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( 2 * (eta(x^7 + A) * eta(x^8 + A))^2 / (eta(x^2 + A) * eta(x^28 + A)) + x * eta(x + A) * eta(x^4 + A)^4 * eta(x^14 + A)^4 * eta(x^56 + A) / (eta(x^2 + A)^3* eta(x^7 + A) * eta(x^8 + A) * eta(x^28 + A)^3), n))};

%Y Cf. A035176.

%Y Cf. A000122, A000700, A010054, A121373.

%K nonn,easy,mult

%O 0,1

%A _Michael Somos_, Jun 22 2011