login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Ordered sums f+5*g, where f and g are positive Fibonacci numbers (A000045).
5

%I #13 Oct 30 2017 03:41:03

%S 6,7,8,10,11,12,13,15,16,17,18,20,23,26,27,28,30,31,33,36,38,39,41,42,

%T 43,44,45,46,48,49,53,59,60,61,65,66,67,68,70,73,74,78,80,86,94,95,99,

%U 104,106,107,108,110,113,114,118,120,126,129,139,149,154,159

%N Ordered sums f+5*g, where f and g are positive Fibonacci numbers (A000045).

%H G. C. Greubel, <a href="/A191879/b191879.txt">Table of n, a(n) for n = 1..5000</a>

%t c = 1; d = 5; f[n_] := Fibonacci[n];

%t g[n_] := c*f[n]; h[n_] := d*f[n];

%t t[i_, j_] := h[i] + g[j];

%t u = Table[t[i, j], {i, 1, 20}, {j, 1, 20}];

%t v = Union[Flatten[u ]] (* A191879 *)

%t t1[i_, j_] := If[g[i] - h[j] > 0, g[i] - h[j], 0]

%t u1 = Table[t1[i, j], {i, 1, 20}, {j, 1, 20}];

%t v1 = Union[Flatten[u1 ]] (* A191880: c*f(i)-d*f(j) *)

%t g1[n_] := d*f[n]; h1[n_] := c*f[n];

%t t2[i_, j_] := If[g1[i] - h1[j] > 0, g1[i] - h1[j], 0]

%t u2 = Table[t2[i, j], {i, 1, 20}, {j, 1, 20}];

%t v2 = Union[Flatten[u2 ]] (* A191881: d*f(i)-c*f(j) *)

%t v3 = Union[v1, v2] (* A191882*)

%Y Cf. A191880, A191881, A191882.

%K nonn

%O 1,1

%A _Clark Kimberling_, Jun 18 2011