login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The slowest growing sequence that satisfies: a(1) = 1, a(n) is a multiple of n and a(n-1), and a(n) > a(n-1).
1

%I #25 Jun 28 2024 04:29:15

%S 1,2,6,12,60,120,840,1680,5040,10080,110880,221760,2882880,5765760,

%T 11531520,23063040,392071680,784143360,14898723840,29797447680,

%U 59594895360,119189790720,2741365186560,5482730373120,27413651865600,54827303731200,164481911193600,328963822387200

%N The slowest growing sequence that satisfies: a(1) = 1, a(n) is a multiple of n and a(n-1), and a(n) > a(n-1).

%H Amiram Eldar, <a href="/A191836/b191836.txt">Table of n, a(n) for n = 1..1000</a>

%F a(n) = A072486(n) for n < 15.

%F a(1) = 1; for n > 1, a(n) = a(n-1) * (if n is a prime power p^k then p else 2). - _Franklin T. Adams-Watters_, Jan 13 2012

%t a[1]=1; a[n_]:=a[n]=If[LCM[n,a[n-1]]==a[n-1],2 *a[n-1],LCM[n,a[n-1]]]

%Y Cf. A072486.

%K nonn

%O 1,2

%A _José María Grau Ribas_, Jun 17 2011

%E a(26)-a(28) from _Amiram Eldar_, Jun 28 2024