Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Oct 18 2017 17:19:14
%S 1,2,4,3,7,5,6,14,10,8,11,27,19,15,9,22,54,38,30,18,12,43,107,75,59,
%T 35,23,13,86,214,150,118,70,46,26,16,171,427,299,235,139,91,51,31,17,
%U 342,854,598,470,278,182,102,62,34,20,683,1707,1195,939,555,363
%N Dispersion of A042964 (numbers congruent to 2 or 3 mod 4), by antidiagonals.
%C Row 1: A005578
%C Row 2: A160113
%C For a background discussion of dispersions, see A191426.
%C ...
%C Each of the sequences (4n, n>2), (4n+1, n>0), (3n+2, n>=0), generates a dispersion. Each complement (beginning with its first term >1) also generates a dispersion. The six sequences and dispersions are listed here:
%C ...
%C A191663=dispersion of A042948 (0 or 1 mod 4 and >1)
%C A054582=dispersion of A005843 (0 or 2 mod 4 and >1; evens)
%C A191664=dispersion of A014601 (0 or 3 mod 4 and >1)
%C A191665=dispersion of A042963 (1 or 2 mod 4 and >1)
%C A191448=dispersion of A005408 (1 or 3 mod 4 and >1, odds)
%C A191666=dispersion of A042964 (2 or 3 mod 4)
%C ...
%C EXCEPT for at most 2 initial terms (so that column 1 always starts with 1):
%C A191663 has 1st col A042964, all else A042948
%C A054582 has 1st col A005408, all else A005843
%C A191664 has 1st col A042963, all else A014601
%C A191665 has 1st col A014601, all else A042963
%C A191448 has 1st col A005843, all else A005408
%C A191666 has 1st col A042948, all else A042964
%C ...
%C There is a formula for sequences of the type "(a or b mod m)", (as in the Mathematica program below):
%C If f(n)=(n mod 2), then (a,b,a,b,a,b,...) is given by
%C a*f(n+1)+b*f(n), so that "(a or b mod m)" is given by
%C a*f(n+1)+b*f(n)+m*floor((n-1)/2)), for n>=1.
%H Ivan Neretin, <a href="/A191666/b191666.txt">Table of n, a(n) for n = 1..5050</a> (first 100 antidiagonals, flattened)
%e Northwest corner:
%e 1...2...3....6...11
%e 4...7...14....27...54
%e 5...10...19...38...75
%e 8...15..30...59...118
%e 8...18..35...70...139
%t (* Program generates the dispersion array T of the increasing sequence f[n] *)
%t r = 40; r1 = 12; c = 40; c1 = 12;
%t a = 2; b = 3; m[n_] := If[Mod[n, 2] == 0, 1, 0];
%t f[n_] := a*m[n + 1] + b*m[n] + 4*Floor[(n - 1)/2]
%t Table[f[n], {n, 1, 30}] (* A042964: (2+4k,3+4k) *)
%t mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
%t rows = {NestList[f, 1, c]};
%t Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
%t t[i_, j_] := rows[[i, j]];
%t TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191666 *)
%t Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191666 *)
%Y Cf. A042963, A014601, A191426, A191663.
%K nonn,tabl
%O 1,2
%A _Clark Kimberling_, Jun 11 2011