%I
%S 1,1,2,3,23,3
%N a(1)=1, a(2)=1. For n > 2, start with n and iterate the map (k > concatenation of antidivisors of k) until we reach a prime q; then a(n) = q. If we never reach a prime, a(n) = 0.
%C Similar to A120716, which uses the proper divisors of n. Other known values include a(10) = 347, a(14) = 349, and a(16) = 311. See also A191859.
%e The antidivisors of 5 are 2, 3, and 23 is prime, hence a(5) = 23.
%e The antidivisors of 7 are 2, 3, 5, and 235 is composite; the antidivisors of 235 are 2, 3, 7, 10, 67, 94, 157, and 237106794157 = 59*547*7346909 is composite; the antidivisors of 237106794157 start 2, 3, 5, 15, 118, 1094, 1709, 4519, 61403, 64546, 7722971, 14693818, 104937727, but the others are unknown, hence a(7) is also unknown.
%p antidivisors := proc(n) local a, k; a := {} ; for k from 2 to n1 do if abs((n mod k) k/2) < 1 then a := a union {k} ; end if; end do: a ; end proc:
%p A130846 := proc(n) digcatL(sort(convert(antidivisors(n),list))) ; end proc:
%p A191648 := proc(n) if n <=2 then 1; else m := A130846(n) ; while not isprime(m) do m := A130846(m) ; end do: return m; end if; end proc: # _R. J. Mathar_, Jun 30 2011
%Y Cf. A130846, A066272, A120716, A191647.
%K nonn,base,more,hard
%O 1,3
%A _Paolo P. Lava_, Jun 10 2011
