login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) is the genus of the modular curve associated to the principal congruence subgroup of level p(n), where p(n) is the n-th prime number.
0

%I #17 Dec 14 2019 21:28:04

%S 0,0,3,26,50,133,196,375,806,1001,1768,2451,2850,3773,5500,7686,8526,

%T 11408,13651,14875,18981,22100,27391,35673,40376,42875,48178,50986,

%U 56925,81313,89376,102443,107066,132276,137751,155078,173800,187083,208250,230956,238876,281201

%N a(n) is the genus of the modular curve associated to the principal congruence subgroup of level p(n), where p(n) is the n-th prime number.

%H Jens Putzka, <a href="http://www.jens.putzka.net/download/diplomarbeit.pdf">Aequivariante Signaturen und Darstellungen der Modulgruppe in der Kohomologie von Modulkurven</a>, Master's Thesis (2006), page 18.

%F a(n) = (prime(n)+2)*(prime(n)-3)*(prime(n)-5)/24.

%o (PARI) a(p)=(p+2)*(p-3)*(p-5)/24;

%o forprime(p=3,1000,print1(a(p),", "));

%K nonn,easy

%O 2,3

%A _Gaƫl Collinet_, Jun 08 2011