login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Riordan matrix (1/(1-3*x^2),x/(1-x)).
4

%I #11 Sep 04 2022 10:47:51

%S 1,0,1,3,1,1,0,4,2,1,9,4,6,3,1,0,13,10,9,4,1,27,13,23,19,13,5,1,0,40,

%T 36,42,32,18,6,1,81,40,76,78,74,50,24,7,1,0,121,116,154,152,124,74,31,

%U 8,1,243,121,237,270,306,276,198,105,39,9,1,0,364,358,507,576,582,474,303,144,48,10,1,729,364,722,865,1083,1158,1056,777,447,192,58,11,1

%N Riordan matrix (1/(1-3*x^2),x/(1-x)).

%C Row sums = A167936(n+1).

%C Diagonal sums = A191584.

%C Central coefficients = A191585.

%C Alternated row sums: Sum_{k=0..n} (-1)^(n-k)*T(n,k) = 3^floor(n/2) (A167936).

%C Binomial row sums: Sum_{k=0..n} binomial(n,k)*T(n,k) = central coefficients.

%F T(n,k) = Sum_{i=0..(n-k)/2} binomial(n-2*i-1,n-k-2*i)*3^i.

%F Recurrence: T(n+1,k+1) = T(n,k) + T(n,k+1).

%e Triangle begins:

%e 1

%e 0, 1

%e 3, 1, 1

%e 0, 4, 2, 1

%e 9, 4, 6, 3, 1

%e 0, 13, 10, 9, 4, 1

%e 27, 13, 23, 19, 13, 5, 1

%e 0, 40, 36, 42, 32, 18, 6, 1

%e 81, 40, 76, 78, 74, 50, 24, 7, 1

%t Flatten[Table[Sum[Binomial[n-2i-1,n-k-2i]3^i,{i,0,((n-k))/2}],{n,0,20},{k,0,n}]]

%o (Maxima) create_list(sum(binomial(n-2*i-1,n-k-2*i)*3^i,i,0,(n-k)/2),n,0,20,k,0,n);

%Y Cf. A167936, A191584, A191585.

%K nonn,easy,tabl

%O 0,4

%A _Emanuele Munarini_, Jun 07 2011