Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Jun 21 2024 07:34:30
%S 0,1,1,2,2,2,2,2,2,2,3,3,3,2,3,3,3,3,3,3,2,3,4,2,3,3,4,3,3,2,4,2,3,3,
%T 4,4,4,3,4,3,4,4,3,3,3,3,5,3,3,3,4,4,4,2,5,4,3,3,4,4,2,4,5,3,3,4,3,3,
%U 4,4,5,4,4,3,5,3,4,3,5,4,3,3,5,3,4,3,4,5,4,3,4,2,3,4,6,3,4,3,4,4,3,4,5,4,5,5,5,3,3,4,6,4,5,3,4,4,3,3,5
%N Maximum edge-degree in the rooted tree with Matula-Goebel number n.
%C The degree of an edge is the number of edges adjacent to it.
%C The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T.
%D A. T. Balaban, Chemical graphs, Theoret. Chim. Acta (Berl.) 53, 355-375, 1979.
%D R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, 2000.
%H Emeric Deutsch, <a href="http://arxiv.org/abs/1111.4288">Rooted tree statistics from Matula numbers</a>, arXiv:1111.4288 [math.CO], 2011.
%H F. Goebel, <a href="http://dx.doi.org/10.1016/0095-8956(80)90049-0">On a 1-1-correspondence between rooted trees and natural numbers</a>, J. Combin. Theory, B 29 (1980), 141-143.
%H I. Gutman and A. Ivic, <a href="http://dx.doi.org/10.1016/0012-365X(95)00182-V">On Matula numbers</a>, Discrete Math., 150, 1996, 131-142.
%H I. Gutman and Yeong-Nan Yeh, <a href="http://www.emis.de/journals/PIMB/067/3.html">Deducing properties of trees from their Matula numbers</a>, Publ. Inst. Math., 53 (67), 1993, 17-22.
%H D. W. Matula, <a href="http://www.jstor.org/stable/2027327">A natural rooted tree enumeration by prime factorization</a>, SIAM Rev. 10 (1968) 273.
%H <a href="/index/Mat#matula">Index entries for sequences related to Matula-Goebel numbers</a>
%F In A191516 one finds the generating polynomial f(n)=F(n,x) of the edges of the rooted tree with Matula-Goebel number n, with respect to edge-degree. a(n)=degree of this polynomial.
%e a(7)=2 because the rooted tree with Matula-Goebel number 7 is Y; all edges have degree 2.
%p with(numtheory): f := proc (n) local r, s, g, h: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: g := proc (n) if n = 1 then 0 elif bigomega(n) = 1 then x^bigomega(pi(n)) else x^bigomega(s(n))*g(r(n))+x^bigomega(r(n))*g(s(n)) end if end proc: h := proc (n) if n = 1 then 0 elif bigomega(n) = 1 then x*g(pi(n))+h(pi(n)) else h(r(n))+h(s(n)) end if end proc: sort(expand(g(n)+h(n))) end proc: seq(degree(f(n)), n = 2 .. 120);
%t r[n_] := FactorInteger[n][[1, 1]];
%t s[n_] := n/r[n];
%t g[n_] := Which[n == 1, 0, PrimeOmega[n] == 1, x^(PrimeOmega[PrimePi[n]]), True, x^(PrimeOmega[s[n]])*g[r[n]] + x^(PrimeOmega[r[n]])*g[s[n]]];
%t h[n_] := Which[n == 1, 0, PrimeOmega[n] == 1, x*g[PrimePi[n]] + h[PrimePi[n]], True, h[r[n]] + h[s[n]]];
%t f[n_] := g[n] + h[n];
%t a[n_] := Exponent[f[n], x];
%t Table[a[n], {n, 2, 120}] (* _Jean-François Alcover_, Jun 20 2024, after Maple code *)
%Y Cf. A191516.
%K nonn
%O 2,4
%A _Emeric Deutsch_, Dec 15 2011