login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191505
G.f.: 1 = Sum_{n>=0} a(n)*exp(-n!*x)*x^n/n!.
0
1, 1, 1, 4, 75, 7636, 4866965, 22256484426, 827473662052359, 280073424855627741304, 956136927041635596586248969, 36146438316110599447497305174316790, 16486165931975571004114967909531846539984907
OFFSET
0,4
FORMULA
1 = Sum_{n>=0} a(n)*x^n/(1 + n!*x)^(n+1).
1 = Sum_{n>=0} a(n)*C(n+m-1,n)*x^n/(1 + n!*x)^(n+m) for m>=1.
log(1+x) = Sum_{n>=1} a(n)*x^n/(1 + n!*x)^n/n.
a(n) = Sum_{k>=0..n-1} -(-1)^(n-k)*C(n,k)*k!^(n-k)*a(k) for n>0 with a(0)=1.
EXAMPLE
1 = exp(-x) + exp(-x)*x + exp(-2!*x)*x^2/2! + 4*exp(-3!*x)*x^3/3! + 75*exp(-4!*x)*x^4/4! +...
1 = 1/(1+x) + x/(1+x)^2 + x^2/(1+2!*x)^3 + 4*x^3/(1+3!*x)^4 + 75*x^4/(1+4!*x)^5 +...
1 = 1/(1+x)^2 + 1*2*x/(1+x)^3 + 1*3*x^2/(1+2!*x)^4 + 4*4*x^3/(1+3!*x)^5 + 75*5*x^4/(1+4!*x)^6 +...
1 = 1/(1+x)^3 + 1*3*x/(1+x)^4 + 1*6*x^2/(1+2!*x)^5 + 4*10*x^3/(1+3!*x)^6 + 75*15*x^4/(1+4!*x)^7 +...
log(1+x) = x/(1+x) + x^2/(1+2!*x)^2/2 + 4*x^3/(1+3!*x)^3/3 + 75*x^4/(1+4!*x)^4/4 + 7636*x^5/(1+5!*x)^5/5 + 4866965*x^6/(1+6!*x)^6/6 +...
PROG
(PARI) {a(n)=polcoeff(1-sum(k=0, n-1, a(k)*x^k/(1+k!*x+x*O(x^n))^(k+1)), n)}
(PARI) {a(n)=n!*polcoeff(1-sum(k=0, n-1, a(k)*x^k*exp(-k!*x+x*O(x^n))/k!), n)}
(PARI) {a(n)=if(n==0, 1, sum(k=0, n-1, -(-1)^(n-k)*binomial(n, k)*k!^(n-k)*a(k)))}
CROSSREFS
Sequence in context: A006236 A374884 A120248 * A100323 A262073 A067921
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 04 2011
STATUS
approved