login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191412
G.f. satisfies: A(x) = x*exp( Sum_{n>=1} A(x^n/(1-x^n))/n ).
1
1, 1, 3, 9, 34, 139, 643, 3198, 17186, 98438, 598551, 3842893, 25957607, 183858842, 1361853786, 10523285935, 84648613474, 707461189513, 6132612218266, 55050390426042, 510994289786018, 4898133459331104, 48424584171850411
OFFSET
1,3
COMMENTS
Compare the g.f. to the g.f. P(x) of the partition numbers (A000041):
* P(x) = exp( Sum_{n>=1} (x^n/(1-x^n))/n ),
and to the g.f. R(x) of rooted trees with n nodes (A000081):
* R(x) = x*exp( Sum_{n>=1} R(x^n)/n ).
Consider also the trivial identity:
* B(x) = x*exp( Sum_{n>=1} B(x^n/(1+x^n))/n ) where B(x) = x/(1-x).
EXAMPLE
G.f.: A(x) = x + x^2 + 3*x^3 + 9*x^4 + 34*x^5 + 139*x^6 + 643*x^7 +...
where the g.f. A(x) satisfies:
log(A(x)/x) = A(x/(1-x)) + A(x^2/(1-x^2))/2 + A(x^3/(1-x^3))/3 + A(x^4/(1-x^4))/4 +...
Explicitly, the logarithmic series begins:
log(A(x)/x) = x + 5*x^2/2 + 19*x^3/3 + 93*x^4/4 + 466*x^5/5 + 2633*x^6/6 + 15534*x^7/7 + 97645*x^8/8 +...
PROG
(PARI) {a(n)=local(A=x+x^2); for(i=1, n, A=x*exp(sum(m=1, n, subst(A, x, x^m/(1-x^m+x*O(x^n)))/m))); polcoeff(A, n)}
CROSSREFS
Sequence in context: A353944 A245893 A085686 * A371542 A349017 A246013
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 01 2011
STATUS
approved