OFFSET
1,3
COMMENTS
Compare the g.f. to the g.f. P(x) of the partition numbers (A000041):
* P(x) = exp( Sum_{n>=1} (x^n/(1-x^n))/n ),
and to the g.f. R(x) of rooted trees with n nodes (A000081):
* R(x) = x*exp( Sum_{n>=1} R(x^n)/n ).
Consider also the trivial identity:
* B(x) = x*exp( Sum_{n>=1} B(x^n/(1+x^n))/n ) where B(x) = x/(1-x).
EXAMPLE
G.f.: A(x) = x + x^2 + 3*x^3 + 9*x^4 + 34*x^5 + 139*x^6 + 643*x^7 +...
where the g.f. A(x) satisfies:
log(A(x)/x) = A(x/(1-x)) + A(x^2/(1-x^2))/2 + A(x^3/(1-x^3))/3 + A(x^4/(1-x^4))/4 +...
Explicitly, the logarithmic series begins:
log(A(x)/x) = x + 5*x^2/2 + 19*x^3/3 + 93*x^4/4 + 466*x^5/5 + 2633*x^6/6 + 15534*x^7/7 + 97645*x^8/8 +...
PROG
(PARI) {a(n)=local(A=x+x^2); for(i=1, n, A=x*exp(sum(m=1, n, subst(A, x, x^m/(1-x^m+x*O(x^n)))/m))); polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 01 2011
STATUS
approved