The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A191394 Number of base pyramids in all dispersed Dyck paths of length n (i.e., in all Motzkin paths of length n with no (1,0)-steps at positive heights). 2
 0, 0, 1, 2, 6, 12, 28, 56, 121, 242, 507, 1014, 2093, 4186, 8569, 17138, 34902, 69804, 141664, 283328, 573574, 1147148, 2318010, 4636020, 9354540, 18709080, 37708672, 75417344, 151868100, 303736200, 611180252, 1222360504, 2458123705, 4916247410, 9881255187 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS A base pyramid is a factor of the form U^j D^j (j>0), starting at the horizontal axis. Here U=(1,1) and D=(1,-1). LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 FORMULA a(n) = Sum_{k=0..(1 + ceiling(n/2))} k*A191392(n, k), formula clarified by G. C. Greubel. G.f.: 4*x^2/((1-x^2)*(1-2*x+sqrt(1-4*x^2))^2). a(n) ~ 2^(n+1)/3 * (1-sqrt(2)/sqrt(Pi*n)). - Vaclav Kotesovec, Mar 21 2014 a(n) = ceiling(2*(2^n-1)/3) - Sum_{i=1..(n+1)/2} binomial(n-2*i+1, floor((n-2*i+1)/2)) = A000975(n) - A174783(n). - Vladimir Kruchinin, Mar 15 2016 D-finite with recurrence n*a(n) -2*n*a(n-1) +(-5*n+12)*a(n-2) +2*(5*n-12)*a(n-3) +4*(n-3)*a(n-4) +8*(-n+3)*a(n-5)=0. - R. J. Mathar, Jun 14 2016 EXAMPLE a(4) = 6 because in HHHH, HH(UD), H(UD)H, (UD)HH, (UD)(UD), and (UUDD) we have a total of 0+1+1+1+2+1 = 6 base pyramids (shown between parentheses). MAPLE G := 4*z^2/((1-z^2)*(1-2*z+sqrt(1-4*z^2))^2): Gser := series(G, z = 0, 38): seq(coeff(Gser, z, n), n = 0 .. 34); MATHEMATICA CoefficientList[Series[(4x^2)/((1-x^2)(1-2x+Sqrt[1-4x^2])^2), {x, 0, 40}], x] (* Harvey P. Dale, Jun 19 2011 *) PROG (Maxima) a(n):=ceiling(2*(2^n-1)/3)-sum((binomial(n-2*i+1, floor((n-2*i+1)/2))), i, 1, (n+1)/2); /* Vladimir Kruchinin, Mar 15 2016 */ (PARI) x='x+O('x^50); concat([0, 0], Vec(4*x^2/((1-x^2)*(1-2*x+sqrt(1-4*x^2))^2))) \\ G. C. Greubel, Mar 26 2017 CROSSREFS Cf. A000975, A174783, A191392. Sequence in context: A350271 A089820 A122746 * A237500 A330455 A183467 Adjacent sequences: A191391 A191392 A191393 * A191395 A191396 A191397 KEYWORD nonn AUTHOR Emeric Deutsch, Jun 04 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 23 10:26 EDT 2024. Contains 371905 sequences. (Running on oeis4.)