login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of e.g.f. (1/(1-x))^exp(x).
10

%I #21 May 03 2022 11:05:45

%S 1,1,4,18,102,695,5485,49077,490308,5404569,65106103,850535477,

%T 11972432846,180605413001,2906109200293,49678357272247,

%U 898988188301320,17167497793440977,344991795682802331,7277230501449340417,160765066207998479698

%N Expansion of e.g.f. (1/(1-x))^exp(x).

%C Exponential transform of A002104. - _Seiichi Manyama_, May 03 2022

%H Seiichi Manyama, <a href="/A191365/b191365.txt">Table of n, a(n) for n = 0..448</a>

%F a(n) = sum(k=1..n, sum(i=0..n-k, binomial(n,i)*k^i*(-1)^(n-k-i)*Stirling1(n-i,k))), n>0, a(0)=1.

%F a(n) ~ n! * n^(exp(1)-1)/Gamma(exp(1)) * (1-exp(1)*(exp(1)-1)*log(n)/n). - _Vaclav Kotesovec_, Jun 21 2013

%F a(0) = 1; a(n) = Sum_{k=1..n} A002104(k) * binomial(n-1,k-1) * a(n-k). - _Seiichi Manyama_, May 03 2022

%t CoefficientList[Series[(1/(1-x))^Exp[x], {x, 0, 20}], x]* Range[0, 20]! (* _Vaclav Kotesovec_, Jun 21 2013 *)

%o (Maxima) a(n):=sum(sum(binomial(n,i)*k^i*(-1)^(n-k-i)*stirling1(n-i,k),i,0,n-k),k,1,n);

%o (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-x)^exp(x))) \\ _Seiichi Manyama_, May 03 2022

%Y Cf. A002104, A298374.

%K nonn

%O 0,3

%A _Vladimir Kruchinin_, May 31 2011