OFFSET
1,3
COMMENTS
Every integer occurs in this sequence (infinitely many times).
Represent the array as {g(i,j): i>=1, j>=1}. Then for m>=0, (diagonal #m) is the sequence (g(i,i+m)), i>=1; for m<0, (diagonal #m) is the sequence (g(i+m,i)), i>=1.
EXAMPLE
The main diagonal of the Wythoff array is (1,7,16,...); that's diagonal #0, so that a(1)=0, a(7)=0, a(16)=0.
MATHEMATICA
f[n_]:=f[n]=Fibonacci[n];
g[i_, j_]:=f[j+1]*Floor[i*GoldenRatio]+(i-1) f[j];
t=Table[g[i, j], {i, 500}, {j, 100}];
Map[#[[2]]-#[[1]]&, Most[Reap[NestWhileList[#+1&, 1, Length[Sow[FirstPosition[t, #]]]>1&]][[2]][[1]]]] (* Peter J. C. Moses, Feb 09 2023 *)
CROSSREFS
KEYWORD
sign
AUTHOR
Clark Kimberling, May 31 2011
EXTENSIONS
Mathematica program replaced by Clark Kimberling, Feb 10 2023.
STATUS
approved